Do you want to publish a course? Click here

Untangling scaling dimensions of fixed charge operators in Higgs Theories

165   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We go beyond a systematic review of the semiclassical approaches for determining the scaling dimensions of fixed-charge operators in $U(1)$ and $O(N)$ models by introducing a general strategy apt at determining the relation between a given charge configuration and the associated operators for more involved symmetry groups such as the $U(N) times U(M)$. We show how, varying the charge configuration, it is possible to access anomalous dimensions of different operators transforming according to a variety of irreducible representations of the non-abelian symmetry group without the aid of diagrammatical computations. We illustrate our computational strategy by determining the anomalous dimensions of several composite operators to the next-to-leading order in the semiclassical expansion for the $U(N) times U(M)$ conformal field theory (CFT) in $4-epsilon$ dimensions. Thanks to the powerful interplay between semiclassical methods and group theory we can, for the first time, extract scaling dimensions for a wide range of operators.



rate research

Read More

A non-perturbative Renormalization Group approach is used to calculate scaling functions for an O(4) model in d=3 dimensions in the presence of an external symmetry-breaking field. These scaling functions are important for the analysis of critical behavior in the O(4) universality class. For example, the finite-temperature phase transition in QCD with two flavors is expected to fall into this class. Critical exponents are calculated in local potential approximation. Parameterizations of the scaling functions for the order parameter and for the longitudinal susceptibility are given. Relations from universal scaling arguments between these scaling functions are investigated and confirmed. The expected asymptotic behavior of the scaling functions predicted by Griffiths is observed. Corrections to the scaling behavior at large values of the external field are studied qualitatively. These scaling corrections can become large, which might have implications for the scaling analysis of lattice QCD results.
We compute the spectrum of anomalous dimensions of non-derivative composite operators with an arbitrary number of fields $n$ in the $O(N)$ vector model with cubic anisotropy at the one-loop order in the $epsilon$-expansion. The complete closed-form expression for the anomalous dimensions of the operators which do not undergo mixing effects is derived and the structure of the general solution to the mixing problem is outlined. As examples, the full explicit solution for operators with up to $n=6$ fields is presented and a sample of the OPE coefficients is calculated. The main features of the spectrum are described, including an interesting pattern pointing to the deeper structure.
Under reasonable assumptions about the complex structure of the set of singularities on the Coulomb branch of $mathcal N=2$ superconformal field theories, we present a relatively simple and elementary argument showing that the scaling dimension, $Delta$, of a Coulomb branch operator of a rank $r$ theory is allowed to take values in a finite set of rational numbers$Deltain big[frac{n}{m}big|n,minmathbb N, 0<mle n, gcd(n,m)=1, varphi(n)le2rbig]$ where $varphi(n)$ is the Euler totient function. The maximal dimension grows superlinearly with rank as $Delta_text{max} sim r lnln r$. This agrees with the recent result of Caorsi and Cecotti.
We determine both analytically and numerically the entanglement between chiral degrees of freedom in the ground state of massive perturbations of 1+1 dimensional conformal field theories quantised on a cylinder. Analytic predictions are obtained from a variational Ansatz for the ground state in terms of smeared conformal boundary states recently proposed by J. Cardy, which is validated by numerical results from the Truncated Conformal Space Approach. We also extend the scope of the Ansatz by resolving ground state degeneracies exploiting the operator product expansion. The chiral entanglement entropy is computed both analytically and numerically as a function of the volume. The excellent agreement between the analytic and numerical results provides further validation for Cardys Ansatz. The chiral entanglement entropy contains a universal $O(1)$ term $gamma$ for which an exact analytic result is obtained, and which can distinguish energetically degenerate ground states of gapped systems in 1+1 dimensions.
68 - G. Mussardo , V. Riva , G. Sotkov 2005
We determine the semiclassical energy levels for the phi^4 field theory in the broken symmetry phase on a 2D cylindrical geometry with antiperiodic boundary conditions by quantizing the appropriate finite--volume kink solutions. The analytic form of the kink scaling functions for arbitrary size of the system allows us to describe the flow between the twisted sector of c=1 CFT in the UV region and the massive particles in the IR limit. Kink-creating operators are shown to correspond in the UV limit to disorder fields of the c=1 CFT. The problem of the finite--volume spectrum for generic 2D Landau--Ginzburg models is also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا