Do you want to publish a course? Click here

Vampire With a Brain Is a Good ITP Hammer

113   0   0.0 ( 0 )
 Added by Martin Suda
 Publication date 2021
and research's language is English
 Authors Martin Suda




Ask ChatGPT about the research

Vampire has been for a long time the strongest first-order automatic theorem prover, widely used for hammer-style proof automation in ITPs such as Mizar, Isabelle, HOL, and Coq. In this work, we considerably improve the performance of Vampire in hammering over the full Mizar library by enhancing its saturation procedure with efficient neural guidance. In particular, we employ a recently proposed recursive neural network classifying the generated clauses based only on their derivation history. Compared to previous neural methods based on considering the logical content of the clauses, our architecture makes evaluating a single clause much less time consuming. The resulting system shows good learning capability and improves on the state-of-the-art performance on the Mizar library, while proving many theorems that the related ENIGMA system could not prove in a similar hammering evaluation.



rate research

Read More

The discriminator from generative adversarial nets (GAN) has been used by researchers as a feature extractor in transfer learning and appeared worked well. However, there are also studies that believe this is the wrong research direction because intuitively the task of the discriminator focuses on separating the real samples from the generated ones, making features extracted in this way useless for most of the downstream tasks. To avoid this dilemma, we first conducted a thorough theoretical analysis of the relationship between the discriminator task and the features extracted. We found that the connection between the task of the discriminator and the feature is not as strong as was thought, for that the main factor restricting the feature learned by the discriminator is not the task, but is the need to prevent the entire GAN model from mode collapse during the training. From this perspective and combined with further analyses, we found that to avoid mode collapse, the features extracted by the discriminator are not guided to be different for the real samples, but divergence without noise is indeed allowed and occupies a large proportion of the feature space. This makes the features more robust and helps answer the question as to why the discriminator can succeed as a feature extractor in related research. Consequently, to expose the essence of the discriminator extractor as different from other extractors, we analyze the counterpart of the discriminator extractor, the classifier extractor that assigns the target samples to different categories. We found the performance of the discriminator extractor may be inferior to the classifier based extractor when the source classification task is similar to the target task, which is the common case, but the ability to avoid noise prevents the discriminator from being replaced by the classifier.
142 - Naoya Arakawa 2020
This article surveys engineering and neuroscientific models of planning as a cognitive function, which is regarded as a typical function of fluid intelligence in the discussion of general intelligence. It aims to present existing planning models as references for realizing the planning function in brain-inspired AI or artificial general intelligence (AGI). It also proposes themes for the research and development of brain-inspired AI from the viewpoint of tasks and architecture.
This article introduces the solutions of the team lvisTraveler for LVIS Challenge 2020. In this work, two characteristics of LVIS dataset are mainly considered: the long-tailed distribution and high quality instance segmentation mask. We adopt a two-stage training pipeline. In the first stage, we incorporate EQL and self-training to learn generalized representation. In the second stage, we utilize Balanced GroupSoftmax to promote the classifier, and propose a novel proposal assignment strategy and a new balanced mask loss for mask head to get more precise mask predictions. Finally, we achieve 41.5 and 41.2 AP on LVIS v1.0 val and test-dev splits respectively, outperforming the baseline based on X101-FPN-MaskRCNN by a large margin.
There is a growing discrepancy in computer vision between large-scale models that achieve state-of-the-art performance and models that are affordable in practical applications. In this paper we address this issue and significantly bridge the gap between these two types of models. Throughout our empirical investigation we do not aim to necessarily propose a new method, but strive to identify a robust and effective recipe for making state-of-the-art large scale models affordable in practice. We demonstrate that, when performed correctly, knowledge distillation can be a powerful tool for reducing the size of large models without compromising their performance. In particular, we uncover that there are certain implicit design choices, which may drastically affect the effectiveness of distillation. Our key contribution is the explicit identification of these design choices, which were not previously articulated in the literature. We back up our findings by a comprehensive empirical study, demonstrate compelling results on a wide range of vision datasets and, in particular, obtain a state-of-the-art ResNet-50 model for ImageNet, which achieves 82.8% top-1 accuracy.
The Computational Metaphor, comparing the brain to the computer and vice versa, is the most prominent metaphor in neuroscience and artificial intelligence (AI). Its appropriateness is highly debated in both fields, particularly with regards to whether it is useful for the advancement of science and technology. Considerably less attention, however, has been devoted to how the Computational Metaphor is used outside of the lab, and particularly how it may shape societys interactions with AI. As such, recently publicized concerns over AIs role in perpetuating racism, genderism, and ableism suggest that the term artificial intelligence is misplaced, and that a new lexicon is needed to describe these computational systems. Thus, there is an essential question about the Computational Metaphor that is rarely asked by neuroscientists: whom does it help and whom does it harm? This essay invites the neuroscience community to consider the social implications of the fields most controversial metaphor.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا