Do you want to publish a course? Click here

Noether theorem in stochastic optimal control problems via contact symmetries

134   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We establish a generalization of Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton-Jacobi-Bellman equation associated to an optimal control problem it is possible to build a related local martingale. Moreover, we provide an application of the theoretical results to Mertons optimal portfolio problem, showing that this model admits infinitely many conserved quantities in the form of local martingales.



rate research

Read More

This paper studies a class of non$-$Markovian singular stochastic control problems, for which we provide a novel probabilistic representation. The solution of such control problem is proved to identify with the solution of a $Z-$constrained BSDE, with dynamics associated to a non singular underlying forward process. Due to the non$-$Markovian environment, our main argumentation relies on the use of comparison arguments for path dependent PDEs. Our representation allows in particular to quantify the regularity of the solution to the singular stochastic control problem in terms of the space and time initial data. Our framework also extends to the consideration of degenerate diffusions, leading to the representation of the solution as the infimum of solutions to $Z-$constrained BSDEs. As an application, we study the utility maximisation problem with transaction costs for non$-$Markovian dynamics.
We establish existence and uniqueness for infinite dimensional Riccati equations taking values in the Banach space L 1 ($mu$ $otimes$ $mu$) for certain signed matrix measures $mu$ which are not necessarily finite. Such equations can be seen as the infinite dimensional analogue of matrix Riccati equations and they appear in the Linear-Quadratic control theory of stochastic Volterra equations.
95 - Jingrui Sun , Zhen Wu , Jie Xiong 2021
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state processes are present in the cost functional. Based on a Hilbert space method, necessary and sufficient conditions are derived for the solvability of the problem, and a general approach for constructing optimal controls is developed. The crucial step in this construction is to establish the solvability of a Riccati-type equation, which is accomplished under a fairly weak condition by investigating the connection with forward stochastic LQ optimal control problems.
We solve non-Markovian optimal switching problems in discrete time on an infinite horizon, when the decision maker is risk aware and the filtration is general, and establish existence and uniqueness of solutions for the associated reflected backward stochastic difference equations. An example application to hydropower planning is provided.
We study the problem of optimally managing an inventory with unknown demand trend. Our formulation leads to a stochastic control problem under partial observation, in which a Brownian motion with non-observable drift can be singularly controlled in both an upward and downward direction. We first derive the equivalent separated problem under full information with state-space components given by the Brownian motion and the filtering estimate of its unknown drift, and we then completely solve the latter. Our approach uses the transition amongst three different but equivalent problem formulations, links between two-dimensional bounded-variation stochastic control problems and games of optimal stopping, and probabilistic methods in combination with refined viscosity theory arguments. We show substantial regularity of (a transformed version of) the value function, we construct an optimal control rule, and we show that the free boundaries delineating (transformed) action and inaction regions are bounded globally Lipschitz continuous functions. To our knowledge this is the first time that such a problem has been solved in the literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا