Do you want to publish a course? Click here

Discrete-time risk-aware optimal switching with non-adapted costs

111   0   0.0 ( 0 )
 Added by Randall Martyr
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We solve non-Markovian optimal switching problems in discrete time on an infinite horizon, when the decision maker is risk aware and the filtration is general, and establish existence and uniqueness of solutions for the associated reflected backward stochastic difference equations. An example application to hydropower planning is provided.



rate research

Read More

We investigate pricing-hedging duality for American options in discrete time financial models where some assets are traded dynamically and others, e.g. a family of European options, only statically. In the first part of the paper we consider an abstract setting, which includes the classical case with a fixed reference probability measure as well as the robust framework with a non-dominated family of probability measures. Our first insight is that by considering a (universal) enlargement of the space, we can see American options as European options and recover the pricing-hedging duality, which may fail in the original formulation. This may be seen as a weak formulation of the original problem. Our second insight is that lack of duality is caused by the lack of dynamic consistency and hence a different enlargement with dynamic consistency is sufficient to recover duality: it is enough to consider (fictitious) extensions of the market in which all the assets are traded dynamically. In the second part of the paper we study two important examples of robust framework: the setup of Bouchard and Nutz (2015) and the martingale optimal transport setup of Beiglbock et al. (2013), and show that our general results apply in both cases and allow us to obtain pricing-hedging duality for American options.
This paper studies Mean Field Games with a common noise given by a continuous time Markov chain under a Quadratic cost structure. The theory implies that the optimal path under the equilibrium is a Gaussian process conditional on the common noise. Interestingly, it reveals the Markovian structure of the random equilibrium measure flow, which can be characterized via a deterministic finite dimensional system.
This paper studies pricing derivatives in an age-dependent semi-Markov modulated market. We consider a financial market where the asset price dynamics follow a regime switching geometric Brownian motion model in which the coefficients depend on finitely many age-dependent semi-Markov processes. We further allow the volatility coefficient to depend on time explicitly. Under these market assumptions, we study locally risk minimizing pricing of a class of European options. It is shown that the price function can be obtained by solving a non-local B-S-M type PDE. We establish existence and uniqueness of a classical solution of the Cauchy problem. We also find another characterization of price function via a system of Volterra integral equation of second kind. This alternative representation leads to computationally efficient methods for finding price and hedging. Finally, we analyze the PDE to establish continuous dependence of the solution on the instantaneous transition rates of semi-Markov processes. An explicit expression of quadratic residual risk is also obtained.
We establish a generalization of Noether theorem for stochastic optimal control problems. Exploiting the tools of jet bundles and contact geometry, we prove that from any (contact) symmetry of the Hamilton-Jacobi-Bellman equation associated to an optimal control problem it is possible to build a related local martingale. Moreover, we provide an application of the theoretical results to Mertons optimal portfolio problem, showing that this model admits infinitely many conserved quantities in the form of local martingales.
We study the problem of optimally managing an inventory with unknown demand trend. Our formulation leads to a stochastic control problem under partial observation, in which a Brownian motion with non-observable drift can be singularly controlled in both an upward and downward direction. We first derive the equivalent separated problem under full information with state-space components given by the Brownian motion and the filtering estimate of its unknown drift, and we then completely solve the latter. Our approach uses the transition amongst three different but equivalent problem formulations, links between two-dimensional bounded-variation stochastic control problems and games of optimal stopping, and probabilistic methods in combination with refined viscosity theory arguments. We show substantial regularity of (a transformed version of) the value function, we construct an optimal control rule, and we show that the free boundaries delineating (transformed) action and inaction regions are bounded globally Lipschitz continuous functions. To our knowledge this is the first time that such a problem has been solved in the literature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا