Do you want to publish a course? Click here

Two-Stage Augmentation and Adaptive CTC Fusion for Improved Robustness of Multi-Stream End-to-End ASR

148   0   0.0 ( 0 )
 Added by Ruizhi Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Performance degradation of an Automatic Speech Recognition (ASR) system is commonly observed when the test acoustic condition is different from training. Hence, it is essential to make ASR systems robust against various environmental distortions, such as background noises and reverberations. In a multi-stream paradigm, improving robustness takes account of handling a variety of unseen single-stream conditions and inter-stream dynamics. Previously, a practical two-stage training strategy was proposed within multi-stream end-to-end ASR, where Stage-2 formulates the multi-stream model with features from Stage-1 Universal Feature Extractor (UFE). In this paper, as an extension, we introduce a two-stage augmentation scheme focusing on mismatch scenarios: Stage-1 Augmentation aims to address single-stream input varieties with data augmentation techniques; Stage-2 Time Masking applies temporal masks on UFE features of randomly selected streams to simulate diverse stream combinations. During inference, we also present adaptive Connectionist Temporal Classification (CTC) fusion with the help of hierarchical attention mechanisms. Experiments have been conducted on two datasets, DIRHA and AMI, as a multi-stream scenario. Compared with the previous training strategy, substantial improvements are reported with relative word error rate reductions of 29.7-59.3% across several unseen stream combinations.



rate research

Read More

We present a new end-to-end architecture for automatic speech recognition (ASR) that can be trained using emph{symbolic} input in addition to the traditional acoustic input. This architecture utilizes two separate encoders: one for acoustic input and another for symbolic input, both sharing the attention and decoder parameters. We call this architecture a multi-modal data augmentation network (MMDA), as it can support multi-modal (acoustic and symbolic) input and enables seamless mixing of large text datasets with significantly smaller transcribed speech corpora during training. We study different ways of transforming large text corpora into a symbolic form suitable for training our MMDA network. Our best MMDA setup obtains small improvements on character error rate (CER), and as much as 7-10% relative word error rate (WER) improvement over a baseline both with and without an external language model.
End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are constrained in the offline scenario. In this work, we propose the Streaming Unmixing and Recognition Transducer (SURT) for end-to-end multi-talker speech recognition. Our model employs the Recurrent Neural Network Transducer (RNN-T) as the backbone that can meet various latency constraints. We study two different model architectures that are based on a speaker-differentiator encoder and a mask encoder respectively. To train this model, we investigate the widely used Permutation Invariant Training (PIT) approach and the Heuristic Error Assignment Training (HEAT) approach. Based on experiments on the publicly available LibriSpeechMix dataset, we show that HEAT can achieve better accuracy compared with PIT, and the SURT model with 150 milliseconds algorithmic latency constraint compares favorably with the offline sequence-to-sequence based baseline model in terms of accuracy.
The multi-stream paradigm of audio processing, in which several sources are simultaneously considered, has been an active research area for information fusion. Our previous study offered a promising direction within end-to-end automatic speech recognition, where parallel encoders aim to capture diverse information followed by a stream-level fusion based on attention mechanisms to combine the different views. However, with an increasing number of streams resulting in an increasing number of encoders, the previous approach could require substantial memory and massive amounts of parallel data for joint training. In this work, we propose a practical two-stage training scheme. Stage-1 is to train a Universal Feature Extractor (UFE), where encoder outputs are produced from a single-stream model trained with all data. Stage-2 formulates a multi-stream scheme intending to solely train the attention fusion module using the UFE features and pretrained components from Stage-1. Experiments have been conducted on two datasets, DIRHA and AMI, as a multi-stream scenario. Compared with our previous method, this strategy achieves relative word error rate reductions of 8.2--32.4%, while consistently outperforming several conventional combination methods.
189 - Di Wu , Binbin Zhang , Chao Yang 2021
The unified streaming and non-streaming two-pass (U2) end-to-end model for speech recognition has shown great performance in terms of streaming capability, accuracy, real-time factor (RTF), and latency. In this paper, we present U2++, an enhanced version of U2 to further improve the accuracy. The core idea of U2++ is to use the forward and the backward information of the labeling sequences at the same time at training to learn richer information, and combine the forward and backward prediction at decoding to give more accurate recognition results. We also proposed a new data augmentation method called SpecSub to help the U2++ model to be more accurate and robust. Our experiments show that, compared with U2, U2++ shows faster convergence at training, better robustness to the decoding method, as well as consistent 5% - 8% word error rate reduction gain over U2. On the experiment of AISHELL-1, we achieve a 4.63% character error rate (CER) with a non-streaming setup and 5.05% with a streaming setup with 320ms latency by U2++. To the best of our knowledge, 5.05% is the best-published streaming result on the AISHELL-1 test set.
In this paper, we present a novel two-pass approach to unify streaming and non-streaming end-to-end (E2E) speech recognition in a single model. Our model adopts the hybrid CTC/attention architecture, in which the conformer layers in the encoder are modified. We propose a dynamic chunk-based attention strategy to allow arbitrary right context length. At inference time, the CTC decoder generates n-best hypotheses in a streaming way. The inference latency could be easily controlled by only changing the chunk size. The CTC hypotheses are then rescored by the attention decoder to get the final result. This efficient rescoring process causes very little sentence-level latency. Our experiments on the open 170-hour AISHELL-1 dataset show that, the proposed method can unify the streaming and non-streaming model simply and efficiently. On the AISHELL-1 test set, our unified model achieves 5.60% relative character error rate (CER) reduction in non-streaming ASR compared to a standard non-streaming transformer. The same model achieves 5.42% CER with 640ms latency in a streaming ASR system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا