Do you want to publish a course? Click here

Exact surface energy and helical spinons in the XXZ spin chain with arbitrary non-diagonal boundary fields

313   0   0.0 ( 0 )
 Added by Yi Qiao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

An analytic method is proposed to compute the surface energy and elementary excitations of the XXZ spin chain with generic non-diagonal boundary fields. For the gapped case, in some boundary parameter regimes the contributions of the two boundary fields to the surface energy are non-additive. Such a correlation effect between the two boundaries also depends on the parity of the site number $N$ even in the thermodynamic limit $Ntoinfty$. For the gapless case, contributions of the two boundary fields to the surface energy are additive due to the absence of long-range correlation in the bulk. Although the $U(1)$ symmetry of the system is broken, exact spinon-like excitations, which obviously do not carry spin-$frac12$, are observed. The present method provides an universal procedure to deal with quantum integrable systems either with or without $U(1)$ symmetry.



rate research

Read More

110 - Pei Sun , Zhi-Rong Xin , Yi Qiao 2019
The thermodynamic properties of the XXZ spin chain with integrable open boundary conditions at the gaped region (i.e., the anisotropic parameter $eta$ being a real number) are investigated.It is shown that the contribution of the inhomogeneous term in the $T-Q$ relation of the ground state and elementary excited state can be neglected when the size of the system $N$ tends to infinity. The surface energy and elementary excitations induced by the unparallel boundary magnetic fields are obtained.
We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents in the nonequilibrium steady steady state of a chain with N sites. The magnetization profiles are harmonic functions with a frequency proportional to the twisting angle {theta}. The currents of the magnetization components lying in the twisting plane and in the orthogonal direction behave qualitatively differently: In-plane steady state currents scale as 1/N^2 for fixed and sufficiently large boundary coupling, and vanish as the coupling increases, while the transversal current increases with the coupling and saturates to 2{theta}/N.
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, the Bethe-type eigenstates of the XXZ spin-1/2 chain with arbitrary boundary fields are constructed. It is found that by employing two sets of gauge transformations, proper generators and reference state for constructing Bethe vectors can be obtained respectively. Given an inhomogeneous T-Q relation for an eigenvalue, it is proven that the resulting Bethe state is an eigenstate of the transfer matrix, provided that the parameters of the generators satisfy the associated Bethe Ansatz equations.
203 - D. Karevski , V. Popkov , 2012
We demonstrate that the exact non-equilibrium steady state of the one-dimensional Heisenberg XXZ spin chain driven by boundary Lindblad operators can be constructed explicitly with a matrix product ansatz for the non-equilibrium density matrix where the matrices satisfy a {it quadratic algebra}. This algebra turns out to be related to the quantum algebra $U_q[SU(2)]$. Coherent state techniques are introduced for the exact solution of the isotropic Heisenberg chain with and without quantum boundary fields and Lindblad terms that correspond to two different completely polarized boundary states. We show that this boundary twist leads to non-vanishing stationary currents of all spin components. Our results suggest that the matrix product ansatz can be extended to more general quantum systems kept far from equilibrium by Lindblad boundary terms.
63 - T. Kojima 2000
We study the XXZ chain with a boundary at massless regime $-1<Delta<1$. We give the free field realizations of the boundary vacuum state and its dual. Using these realizations, we give the integrable representations of the correlation functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا