Do you want to publish a course? Click here

Horizontally Fused Training Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models

124   0   0.0 ( 0 )
 Added by Shang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Driven by the tremendous effort in researching novel deep learning (DL) algorithms, the training cost of developing new models increases staggeringly in recent years. We analyze GPU cluster usage statistics from a top research institute for more insights into the hardware efficiency achieved by typical DL training jobs. Our study reveals that single-accelerator training jobs can dominate the cluster-wide resource consumption when launched repetitively (e.g., for hyper-parameter tuning) while severely under-utilizing the hardware. Fortunately, we observe that such workloads have the following unique characteristics: (i) the models among jobs often have the same types of operators with the same shapes, and (ii) the inter-model horizontal fusion of such operators is mathematically equivalent to other already well-optimized operators. Thus, to help DL researchers and practitioners effectively improve the hardware utilization of their novel DL training workloads, we propose Horizontally Fused Training Array (HFTA). HFTA is a new DL framework extension library that horizontally fuses the models from different repetitive jobs deeply down to operators and then trains them simultaneously on a shared accelerator. To show the generality of our solution, we apply HFTA to six DL models training on state-of-the-art accelerators (GPUs and TPUs). Our results indicate that HFTA is highly effective in improving hardware utilization and achieves up to $15.1 times$ higher training throughput vs. the standard practice of running each job on a separate accelerator.

rate research

Read More

Huge neural network models have shown unprecedented performance in real-world applications. However, due to memory constraints, model parallelism must be utilized to host large models that would otherwise not fit into the memory of a single device. Previous methods like Megatron partition the parameters of the entire model among multiple devices, while each device has to accommodate the redundant activations in forward and backward pass. In this work, we propose Optimus, a highly efficient and scalable 2D-partition paradigm of model parallelism that would facilitate the training of infinitely large language models. In Optimus, activations are partitioned and distributed among devices, further reducing redundancy. In terms of isoefficiency, Optimus significantly outperforms Megatron. On 64 GPUs of TACC Frontera, Optimus achieves 1.48X speedup for training, 1.78X speedup for inference, and 8X increase in maximum batch size over Megatron. Optimus surpasses Megatron in scaling efficiency by a great margin. The code is available at https://github.com/xuqifan897/Optimus.
75 - Ankit Kariryaa 2020
A major challenge in training deep learning models is the lack of high quality and complete datasets. In the paper, we present a masking approach for training deep learning models from a publicly available but incomplete dataset. For example, city of Hamburg, Germany maintains a list of trees along the roads, but this dataset does not contain any information about trees in private homes and parks. To train a deep learning model on such a dataset, we mask the street trees and aerial images with the road network. Road network used for creating the mask is downloaded from OpenStreetMap, and it marks the area where the training data is available. The mask is passed to the model as one of the inputs and it also coats the output. Our model learns to successfully predict trees only in the masked region with 78.4% accuracy.
Neural networks trained with class-imbalanced data are known to perform poorly on minor classes of scarce training data. Several recent works attribute this to over-fitting to minor classes. In this paper, we provide a novel explanation of this issue. We found that a neural network tends to first under-fit the minor classes by classifying most of their data into the major classes in early training epochs. To correct these wrong predictions, the neural network then must focus on pushing features of minor class data across the decision boundaries between major and minor classes, leading to much larger gradients for features of minor classes. We argue that such an under-fitting phase over-emphasizes the competition between major and minor classes, hinders the neural network from learning the discriminative knowledge that can be generalized to test data, and eventually results in over-fitting. To address this issue, we propose a novel learning strategy to equalize the training progress across classes. We mix features of the major class data with those of other data in a mini-batch, intentionally weakening their features to prevent a neural network from fitting them first. We show that this strategy can largely balance the training accuracy and feature gradients across classes, effectively mitigating the under-fitting then over-fitting problem for minor class data. On several benchmark datasets, our approach achieves the state-of-the-art accuracy, especially for the challenging step-imbalanced cases.
We consider distributed optimization under communication constraints for training deep learning models. We propose a new algorithm, whose parameter updates rely on two forces: a regular gradient step, and a corrective direction dictated by the currently best-performing worker (leader). Our method differs from the parameter-averaging scheme EASGD in a number of ways: (i) our objective formulation does not change the location of stationary points compared to the original optimization problem; (ii) we avoid convergence decelerations caused by pulling local workers descending to different local minima to each other (i.e. to the average of their parameters); (iii) our update by design breaks the curse of symmetry (the phenomenon of being trapped in poorly generalizing sub-optimal solutions in symmetric non-convex landscapes); and (iv) our approach is more communication efficient since it broadcasts only parameters of the leader rather than all workers. We provide theoretical analysis of the batch version of the proposed algorithm, which we call Leader Gradient Descent (LGD), and its stochastic variant (LSGD). Finally, we implement an asynchronous version of our algorithm and extend it to the multi-leader setting, where we form groups of workers, each represented by its own local leader (the best performer in a group), and update each worker with a corrective direction comprised of two attractive forces: one to the local, and one to the global leader (the best performer among all workers). The multi-leader setting is well-aligned with current hardware architecture, where local workers forming a group lie within a single computational node and different groups correspond to different nodes. For training convolutional neural networks, we empirically demonstrate that our approach compares favorably to state-of-the-art baselines.
Deep learning recommendation models (DLRMs) are used across many business-critical services at Facebook and are the single largest AI application in terms of infrastructure demand in its data-centers. In this paper we discuss the SW/HW co-designed solution for high-performance distributed training of large-scale DLRMs. We introduce a high-performance scalable software stack based on PyTorch and pair it with the new evolution of Zion platform, namely ZionEX. We demonstrate the capability to train very large DLRMs with up to 12 Trillion parameters and show that we can attain 40X speedup in terms of time to solution over previous systems. We achieve this by (i) designing the ZionEX platform with dedicated scale-out network, provisioned with high bandwidth, optimal topology and efficient transport (ii) implementing an optimized PyTorch-based training stack supporting both model and data parallelism (iii) developing sharding algorithms capable of hierarchical partitioning of the embedding tables along row, column dimensions and load balancing them across multiple workers; (iv) adding high-performance core operators while retaining flexibility to support optimizers with fully deterministic updates (v) leveraging reduced precision communications, multi-level memory hierarchy (HBM+DDR+SSD) and pipelining. Furthermore, we develop and briefly comment on distributed data ingestion and other supporting services that are required for the robust and efficient end-to-end training in production environments.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا