Do you want to publish a course? Click here

Procrustean Training for Imbalanced Deep Learning

130   0   0.0 ( 0 )
 Added by Wei-Lun Chao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Neural networks trained with class-imbalanced data are known to perform poorly on minor classes of scarce training data. Several recent works attribute this to over-fitting to minor classes. In this paper, we provide a novel explanation of this issue. We found that a neural network tends to first under-fit the minor classes by classifying most of their data into the major classes in early training epochs. To correct these wrong predictions, the neural network then must focus on pushing features of minor class data across the decision boundaries between major and minor classes, leading to much larger gradients for features of minor classes. We argue that such an under-fitting phase over-emphasizes the competition between major and minor classes, hinders the neural network from learning the discriminative knowledge that can be generalized to test data, and eventually results in over-fitting. To address this issue, we propose a novel learning strategy to equalize the training progress across classes. We mix features of the major class data with those of other data in a mini-batch, intentionally weakening their features to prevent a neural network from fitting them first. We show that this strategy can largely balance the training accuracy and feature gradients across classes, effectively mitigating the under-fitting then over-fitting problem for minor class data. On several benchmark datasets, our approach achieves the state-of-the-art accuracy, especially for the challenging step-imbalanced cases.



rate research

Read More

We investigate learning a ConvNet classifier with class-imbalanced data. We found that a ConvNet significantly over-fits the minor classes that do not have sufficient training instances, which is quite opposite to a traditional machine learning model like logistic regression that often under-fits minor classes. We conduct a series of analysis and argue that feature deviation between the training and test instances serves as the main cause. We propose to incorporate class-dependent temperatures (CDT) in learning a ConvNet: CDT forces the minor-class instances to have larger decision values in the training phase, so as to compensate for the effect of feature deviation in the test data. We validate our approach on several benchmark datasets and achieve promising performance. We hope that our insights can inspire new ways of thinking in resolving class-imbalanced deep learning.
420 - Cong Fang , Hangfeng He , Qi Long 2021
In this paper, we introduce the textit{Layer-Peeled Model}, a nonconvex yet analytically tractable optimization program, in a quest to better understand deep neural networks that are trained for a sufficiently long time. As the name suggests, this new model is derived by isolating the topmost layer from the remainder of the neural network, followed by imposing certain constraints separately on the two parts of the network. We demonstrate that the Layer-Peeled Model, albeit simple, inherits many characteristics of well-trained neural networks, thereby offering an effective tool for explaining and predicting common empirical patterns of deep learning training. First, when working on class-balanced datasets, we prove that any solution to this model forms a simplex equiangular tight frame, which in part explains the recently discovered phenomenon of neural collapse cite{papyan2020prevalence}. More importantly, when moving to the imbalanced case, our analysis of the Layer-Peeled Model reveals a hitherto unknown phenomenon that we term textit{Minority Collapse}, which fundamentally limits the performance of deep learning models on the minority classes. In addition, we use the Layer-Peeled Model to gain insights into how to mitigate Minority Collapse. Interestingly, this phenomenon is first predicted by the Layer-Peeled Model before being confirmed by our computational experiments.
Data in real-world application often exhibit skewed class distribution which poses an intense challenge for machine learning. Conventional classification algorithms are not effective in the case of imbalanced data distribution, and may fail when the data distribution is highly imbalanced. To address this issue, we propose a general imbalanced classification model based on deep reinforcement learning. We formulate the classification problem as a sequential decision-making process and solve it by deep Q-learning network. The agent performs a classification action on one sample at each time step, and the environment evaluates the classification action and returns a reward to the agent. The reward from minority class sample is larger so the agent is more sensitive to the minority class. The agent finally finds an optimal classification policy in imbalanced data under the guidance of specific reward function and beneficial learning environment. Experiments show that our proposed model outperforms the other imbalanced classification algorithms, and it can identify more minority samples and has great classification performance.
In many real-world applications of Machine Learning it is of paramount importance not only to provide accurate predictions, but also to ensure certain levels of robustness. Adversarial Training is a training procedure aiming at providing models that are robust to worst-case perturbations around predefined points. Unfortunately, one of the main issues in adversarial training is that robustness w.r.t. gradient-based attackers is always achieved at the cost of prediction accuracy. In this paper, a new algorithm, called Wasserstein Projected Gradient Descent (WPGD), for adversarial training is proposed. WPGD provides a simple way to obtain cost-sensitive robustness, resulting in a finer control of the robustness-accuracy trade-off. Moreover, WPGD solves an optimal transport problem on the output space of the network and it can efficiently discover directions where robustness is required, allowing to control the directional trade-off between accuracy and robustness. The proposed WPGD is validated in this work on image recognition tasks with different benchmark datasets and architectures. Moreover, real world-like datasets are often unbalanced: this paper shows that when dealing with such type of datasets, the performance of adversarial training are mainly affected in term of standard accuracy.
Todays deep learning models are primarily trained on CPUs and GPUs. Although these models tend to have low error, they consume high power and utilize large amount of memory owing to double precision floating point learning parameters. Beyond the Moores law, a significant portion of deep learning tasks would run on edge computing systems, which will form an indispensable part of the entire computation fabric. Subsequently, training deep learning models for such systems will have to be tailored and adopted to generate models that have the following desirable characteristics: low error, low memory, and low power. We believe that deep neural networks (DNNs), where learning parameters are constrained to have a set of finite discrete values, running on neuromorphic computing systems would be instrumental for intelligent edge computing systems having these desirable characteristics. To this extent, we propose the Combinatorial Neural Network Training Algorithm (CoNNTrA), that leverages a coordinate gradient descent-based approach for training deep learning models with finite discrete learning parameters. Next, we elaborate on the theoretical underpinnings and evaluate the computational complexity of CoNNTrA. As a proof of concept, we use CoNNTrA to train deep learning models with ternary learning parameters on the MNIST, Iris and ImageNet data sets and compare their performance to the same models trained using Backpropagation. We use following performance metrics for the comparison: (i) Training error; (ii) Validation error; (iii) Memory usage; and (iv) Training time. Our results indicate that CoNNTrA models use 32x less memory and have errors at par with the Backpropagation models.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا