Do you want to publish a course? Click here

MUFASA: Multimodal Fusion Architecture Search for Electronic Health Records

202   0   0.0 ( 0 )
 Added by Zhen Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

One important challenge of applying deep learning to electronic health records (EHR) is the complexity of their multimodal structure. EHR usually contains a mixture of structured (codes) and unstructured (free-text) data with sparse and irregular longitudinal features -- all of which doctors utilize when making decisions. In the deep learning regime, determining how different modality representations should be fused together is a difficult problem, which is often addressed by handcrafted modeling and intuition. In this work, we extend state-of-the-art neural architecture search (NAS) methods and propose MUltimodal Fusion Architecture SeArch (MUFASA) to simultaneously search across multimodal fusion strategies and modality-specific architectures for the first time. We demonstrate empirically that our MUFASA method outperforms established unimodal NAS on public EHR data with comparable computation costs. In addition, MUFASA produces architectures that outperform Transformer and Evolved Transformer. Compared with these baselines on CCS diagnosis code prediction, our discovered models improve top-5 recall from 0.88 to 0.91 and demonstrate the ability to generalize to other EHR tasks. Studying our top architecture in depth, we provide empirical evidence that MUFASAs improvements are derived from its ability to both customize modeling for each data modality and find effective fusion strategies.



rate research

Read More

Today, despite decades of developments in medicine and the growing interest in precision healthcare, vast majority of diagnoses happen once patients begin to show noticeable signs of illness. Early indication and detection of diseases, however, can provide patients and carers with the chance of early intervention, better disease management, and efficient allocation of healthcare resources. The latest developments in machine learning (more specifically, deep learning) provides a great opportunity to address this unmet need. In this study, we introduce BEHRT: A deep neural sequence transduction model for EHR (electronic health records), capable of multitask prediction and disease trajectory mapping. When trained and evaluated on the data from nearly 1.6 million individuals, BEHRT shows a striking absolute improvement of 8.0-10.8%, in terms of Average Precision Score, compared to the existing state-of-the-art deep EHR models (in terms of average precision, when predicting for the onset of 301 conditions). In addition to its superior prediction power, BEHRT provides a personalised view of disease trajectories through its attention mechanism; its flexible architecture enables it to incorporate multiple heterogeneous concepts (e.g., diagnosis, medication, measurements, and more) to improve the accuracy of its predictions; and its (pre-)training results in disease and patient representations that can help us get a step closer to interpretable predictions.
Recurrent Neural Networks (RNNs) are often used for sequential modeling of adverse outcomes in electronic health records (EHRs) due to their ability to encode past clinical states. These deep, recurrent architectures have displayed increased performance compared to other modeling approaches in a number of tasks, fueling the interest in deploying deep models in clinical settings. One of the key elements in ensuring safe model deployment and building user trust is model explainability. Testing with Concept Activation Vectors (TCAV) has recently been introduced as a way of providing human-understandable explanations by comparing high-level concepts to the networks gradients. While the technique has shown promising results in real-world imaging applications, it has not been applied to structured temporal inputs. To enable an application of TCAV to sequential predictions in the EHR, we propose an extension of the method to time series data. We evaluate the proposed approach on an open EHR benchmark from the intensive care unit, as well as synthetic data where we are able to better isolate individual effects.
The use of collaborative and decentralized machine learning techniques such as federated learning have the potential to enable the development and deployment of clinical risk predictions models in low-resource settings without requiring sensitive data be shared or stored in a central repository. This process necessitates communication of model weights or updates between collaborating entities, but it is unclear to what extent patient privacy is compromised as a result. To gain insight into this question, we study the efficacy of centralized versus federated learning in both private and non-private settings. The clinical prediction tasks we consider are the prediction of prolonged length of stay and in-hospital mortality across thirty one hospitals in the eICU Collaborative Research Database. We find that while it is straightforward to apply differentially private stochastic gradient descent to achieve strong privacy bounds when training in a centralized setting, it is considerably more difficult to do so in the federated setting.
Electronic Health Records (EHRs) provide a wealth of information for machine learning algorithms to predict the patient outcome from the data including diagnostic information, vital signals, lab tests, drug administration, and demographic information. Machine learning models can be built, for example, to evaluate patients based on their predicted mortality or morbidity and to predict required resources for efficient resource management in hospitals. In this paper, we demonstrate that an attacker can manipulate the machine learning predictions with EHRs easily and selectively at test time by backdoor attacks with the poisoned training data. Furthermore, the poison we create has statistically similar features to the original data making it hard to detect, and can also attack multiple machine learning models without any knowledge of the models. With less than 5% of the raw EHR data poisoned, we achieve average attack success rates of 97% on mortality prediction tasks with MIMIC-III database against Logistic Regression, Multilayer Perceptron, and Long Short-term Memory models simultaneously.
Electronic health records represent a holistic overview of patients trajectories. Their increasing availability has fueled new hopes to leverage them and develop accurate risk prediction models for a wide range of diseases. Given the complex interrelationships of medical records and patient outcomes, deep learning models have shown clear merits in achieving this goal. However, a key limitation of these models remains their capacity in processing long sequences. Capturing the whole history of medical encounters is expected to lead to more accurate predictions, but the inclusion of records collected for decades and from multiple resources can inevitably exceed the receptive field of the existing deep learning architectures. This can result in missing crucial, long-term dependencies. To address this gap, we present Hi-BEHRT, a hierarchical Transformer-based model that can significantly expand the receptive field of Transformers and extract associations from much longer sequences. Using a multimodal large-scale linked longitudinal electronic health records, the Hi-BEHRT exceeds the state-of-the-art BEHRT 1% to 5% for area under the receiver operating characteristic (AUROC) curve and 3% to 6% for area under the precision recall (AUPRC) curve on average, and 3% to 6% (AUROC) and 3% to 11% (AUPRC) for patients with long medical history for 5-year heart failure, diabetes, chronic kidney disease, and stroke risk prediction. Additionally, because pretraining for hierarchical Transformer is not well-established, we provide an effective end-to-end contrastive pre-training strategy for Hi-BEHRT using EHR, improving its transferability on predicting clinical events with relatively small training dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا