Do you want to publish a course? Click here

Water in star-forming regions (WISH): Physics and chemistry from clouds to disks as probed by Herschel spectroscopy

68   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

(abridged) Data and results from the WISH key program are summarized, designed to provide a legacy data set to address its physics and chemistry. WISH targeted ~80 sources along the two axes of luminosity and evolutionary stage: from low- to high-mass protostars and from pre-stellar cores to protoplanetary disks. Lines of H2O, HDO, OH, CO and [O I] were observed with the HIFI and PACS instruments, complemented by molecules that probe UV, X-ray or grain chemistry. Most of the far-infrared water emission from protostars is found to be compact, originating from warm outflowing and shocked gas at high density and temperature in at least two physical components. This gas is not probed by low-J CO lines, only by J>14. Water is a significant, but not dominant, coolant. Its abundance is universally low, of order H2O/H2=2E-6, pointing to shock and outflow cavity models that include UV radiation at 100-1000 times the ISRF. In cold quiescent pre-stellar cores and envelopes, the water abundance structure is accurately probed through velocity-resolved line profiles, confirming basic chemistry networks. The gaseous HDO/H2O ratio of 0.025, much higher than that of bulk ice, is representative of the outer photodesorbed ice layers and cold chemistry. Water abundances in the inner hot cores are high, but with variations from 5E-6 to 2E-4. Combined analyses of water gas and ice show that up to 50% of the oxygen budget may be missing, with possible explanations discussed. Water vapor emission from disks is weak, indicating that water ice is locked up in larger pebbles early on and that these pebbles have settled and drifted inward by the Class II stage. Quantitatively, many oceans of water ice are available. Extragalactic low-J H2O emission is mostly compact and collisionally excited. Prospects for future mid- to far-infrared missions are given.



rate research

Read More

Recent observations of the HDO/H$_2$O ratio toward protostars in isolated and clustered environments show an apparent dichotomy, where isolated sources show higher D/H ratios than clustered counterparts. Establishing which physical and chemical processes create this differentiation can provide insights into the chemical evolution of water during star formation and the chemical diversity during the star formation process and in young planetary systems. Methods: The evolution of water is modeled using 3D physicochemical models of a dynamic star-forming environment. The physical evolution during the protostellar collapse is described by tracer particles from a 3D MHD simulation of a molecular cloud region. Each particle trajectory is post-processed using RADMC-3D to calculate the temperature and radiation field. The chemical evolution is simulated using a three-phase grain-surface chemistry model and the results are compared with interferometric observations of H$_2$O, HDO, and D$_2$O in hot corinos toward low-mass protostars. Results: The physicochemical model reproduces the observed HDO/H$_2$O and D$_2$O/HDO ratios in hot corinos, but shows no correlation with cloud environment for similar identical conditions. The observed dichotomy in water D/H ratios requires variation in the initial conditions (e.g., the duration and temperature of the prestellar phase). Reproducing the observed D/H ratios in hot corinos requires a prestellar phase duration $tsim$1-3 Myr and temperatures in the range $T sim$ 10-20 K prior to collapse. This work demonstrates that the observed differentiation between clustered and isolated protostars stems from differences in the molecular cloud or prestellar core conditions and does not arise during the protostellar collapse itself.
`Water In Star-forming regions with Herschel (WISH) is a key program on the Herschel Space Observatory designed to probe the physical and chemical structure of young stellar objects using water and related molecules and to follow the water abundance from collapsing clouds to planet-forming disks. About 80 sources are targeted covering a wide range of luminosities and evolutionary stages, from cold pre-stellar cores to warm protostellar envelopes and outflows to disks around young stars. Both the HIFI and PACS instruments are used to observe a variety of lines of H2O, H218O and chemically related species. An overview of the scientific motivation and observational strategy of the program is given together with the modeling approach and analysis tools that have been developed. Initial science results are presented. These include a lack of water in cold gas at abundances that are lower than most predictions, strong water emission from shocks in protostellar environments, the importance of UV radiation in heating the gas along outflow walls across the full range of luminosities, and surprisingly widespread detection of the chemically related hydrides OH+ and H2O+ in outflows and foreground gas. Quantitative estimates of the energy budget indicate that H2O is generally not the dominant coolant in the warm dense gas associated with protostars. Very deep limits on the cold gaseous water reservoir in the outer regions of protoplanetary disks are obtained which have profound implications for our understanding of grain growth and mixing in disks.
Context: Outflows are an important part of the star formation process as both the result of ongoing active accretion and one of the main sources of mechanical feedback on small scales. Water is the ideal tracer of these effects because it is present in high abundance in various parts of the protostar. Method: We present textit{Herschel} HIFI spectra of multiple water-transitions towards 29 nearby Class 0/I protostars as part of the WISH Survey. These are decomposed into different Gaussian components, with each related to one of three parts of the protostellar system; quiescent envelope, cavity shock and spot shocks in the jet and at the base of the outflow. We then constrain the excitation conditions present in the two outflow-related components. Results: Water emission is optically thick but effectively thin, with line ratios that do not vary with velocity, in contrast to CO. The physical conditions of the cavity and spot shocks are similar, with post-shock H$_{2}$ densities of order 10$^{5}-$10$^{8}$,cm$^{-3}$ and H$_{2}$O column densities of order 10$^{16}-$10$^{18}$,cm$^{-2}$. H$_{2}$O emission originates in compact emitting regions: for the spot shocks these correspond to point sources with radii of order 10-200,AU, while for the cavity shocks these come from a thin layer along the outflow cavity wall with thickness of order 1-30,AU. Conclusions: Water emission at the source position traces two distinct kinematic components in the outflow; J shocks at the base of the outflow or in the jet, and C shocks in a thin layer in the cavity wall. Class I sources have similar excitation conditions to Class 0 sources, but generally smaller line-widths and emitting region sizes. We suggest that it is the velocity of the wind driving the outflow, rather than the decrease in envelope density or mass, that is the cause of the decrease in H$_{2}$O intensity between Class 0 and I.
140 - Chentao Yang 2013
We report the first systematic study of the submillimeter water vapor rotational emission lines in infrared (IR) galaxies based on the Fourier Transform Spectrometer (FTS) data of {it Herschel} SPIRE. Among the 176 galaxies with publicly available FTS data, 45 have at least one H$_2$O emission line detected. The H$_2$O line luminosities range from $sim 1 times 10^5$ $L_{odot}$ to $sim 5 times 10^7 L_{odot}$ while the total IR luminosities ($L_mathrm{IR}$) have a similar spread ($sim 1-300 times 10^{10} L_{odot}$). In addition, emission lines of H$_2$O$^+$ and H$_2^{18}$O are also detected. H$_2$O is found, for most galaxies, to be the strongest molecular emitter after CO in FTS spectra. The luminosity of the five most important H$_2$O lines is near-linearly correlated with $L_mathrm{IR}$, no matter whether strong active galactic nucleus signature is present or not. However, the luminosity of H$_2$O($2_{11}-2_{02}$) and H$_2$O($2_{20}-2_{11}$) appears to increase slightly faster than linear with $L_mathrm{IR}$. Although the slope turns out to be slightly steeper when $zsim 2-4$ ULIRGs are included, the correlation is still closely linear. We find that $L_mathrm{H_2O}/L_mathrm{IR}$ decreases with increasing $f_{25}/f_{60}$, but see no dependence on $f_{60}/f_{100}$, possibly indicating that very warm dust contributes little to the excitation of the submillimeter H$_2$O lines. The average spectral line energy distribution (SLED) of the entire sample is consistent with individual SLEDs and the IR pumping plus collisional excitation model, showing that the strongest lines are H$_2$O($2_{02}-1_{11}$) and H$_2$O($3_{21}-3_{12}$).
(Abridged) Far-infrared Herschel-PACS spectra of 18 low-mass protostars of various luminosities and evolutionary stages are studied. We quantify their far-infrared line emission and the contribution of different atomic and molecular species to the gas cooling budget during protostellar evolution. We also determine the spatial extent of the emission and investigate the underlying excitation conditions. Most of the protostars in our sample show strong atomic and molecular far-infrared emission. Water is detected in 17 objects, including 5 Class I sources. The high-excitation H2O line at 63.3 micron is detected in 7 sources. CO transitions from J=14-13 up to 49-48 are found and show two distinct temperature components on Boltzmann diagrams with rotational temperatures of ~350 K and ~700 K. H2O has typical excitation temperatures of ~150 K. Emission from both Class 0 and I sources is usually spatially extended along the outflow direction but with a pattern depending on the species and the transition. The H2O line fluxes correlate strongly with those of the high-J CO lines, as well as with the bolometric luminosity and envelope mass. They correlate less strongly with OH and not with [OI] fluxes. The PACS data probe at least two physical components. The H2O and CO emission likely arises in non-dissociative (irradiated) shocks along the outflow walls with a range of pre-shock densities. Some OH is also associated with this component, likely resulting from H2O photodissociation. UV-heated gas contributes only a minor fraction to the CO emission observed by PACS, based on the strong correlation between the shock-dominated CO 24-23 line and the CO 14-13 line. [OI] and some of the OH emission probe dissociative shocks in the inner envelope. The total far-infrared cooling is dominated by H2O and CO, with [OI] increasing for Class I sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا