Do you want to publish a course? Click here

Radius, rotational period and inclination of the Be stars in the Be/gamma-ray binaries MWC 148 and MWC 656

62   0   0.0 ( 0 )
 Added by Radoslav K. Zamanov
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using TESS photometry and Rozhen spectra of the Be/gamma-ray binaries MWC 148 and MWC 656, we estimate the projected rotational velocity ($ {v} sin i$), the rotational period (P$_{rm rot}$), radius (R$_{rm 1}$), and inclination ($i$) of the mass donor. For MWC 148 we derive P$_{rm rot} = 1.10 pm 0.03$~d, R$_{rm 1}= 9.2 pm 0.5$~R$_odot$, $i = 40^circ pm 2^circ$, and $ {v} sin i =272 pm 5$~km~s$^{-1}$. For MWC 656 we obtain P$_{rm rot} = 1.12 pm 0.03$~d, R$_{rm 1}= 8.8 pm 0.5$~R$_odot$, $i = 52^circ pm 3^circ$, and $ {v} sin i =313 pm 3$~km~s$^{-1}$. For MWC 656 we also find that the rotation of the mass donor is coplanar with the orbital plane.



rate research

Read More

Context: MWC 656 has recently been established as the first observationally detected high-mass X-ray binary system containing a Be star and a black hole (BH). The system has been associated with a gamma-ray flaring event detected by the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656 gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays. Methods. We have observed MWC 656 with the MAGIC telescopes for $sim$23 hours during two observation periods: between May and June 2012 and June 2013. During the last period, observations were performed contemporaneously with X-ray (XMM-Newton) and optical (STELLA) instruments. Results: We have not detected the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either of the two campaigns carried out. Upper limits (ULs) to the integral flux above 300 GeV have been set, as well as differential ULs at a level of $sim$5% of the Crab Nebula flux. The results obtained from the MAGIC observations do not support persistent emission of very high energy gamma rays from this system at a level of 2.4% the Crab flux.
We find that the formation of MWC 656 (the first Be binary containing a black hole) involves a common envelope phase and a supernova explosion. This result supports the idea that a rapidly rotating Be star can emerge out of a common envelope phase, which is very intriguing because this evolutionary stage is thought to be too fast to lead to significant accretion and spin up of the B star. We predict $sim 10-100$ of B BH binaries to currently reside in the Galactic disk, among which around $1/3$ contain a Be star, but there is only a small chance to observe a system with parameters resembling MWC 656. If MWC 656 is representative of intrinsic Galactic Be BH binary population, it may indicate that standard evolutionary theory needs to be revised. This would pose another evolutionary problem in understanding BH binaries, with BH X-ray Novae formation issue being the prime example. The future evolution of MWC 656 with a $sim 5$ M$_{odot}$ black hole and with a $sim 13$ M$_{odot}$ main sequence companion on a $sim 60$ day orbit may lead to the formation of a coalescing BH-NS system. The estimated Advanced LIGO/Virgo detection rate of such systems is up to $sim 0.2$ yr$^{-1}$. This empirical estimate is a lower limit as it is obtained with only one particular evolutionary scenario, the MWC 656 binary. This is only a third such estimate available (after Cyg X-1 and Cyg X-3), and it lends additional support to the existence of so far undetected BH--NS binaries.
Optical and near-infrared observations are compiled for the three gamma-ray binaries hosting Be stars: PSR B1259-63, LSI+61 303, and HESS J0632+057. The emissions from the Be disk are considered to vary according to the changes in its structure, some of which are caused by interactions with the compact object (e.g., tidal forces). Due to the high eccentricity and large orbit of these systems, the interactions -- and, hence the resultant observables -- depend on the orbital phase. To explore such variations, multi-band photometry and linear polarization were monitored for the three considered systems, using two 1.5 m-class telescopes: IRSF at the South African Astronomical Observatory and Kanata at the Higashi-Hiroshima Observatory.
We present an optical and X-ray study of four Be/X-ray binaries located in the Small Magellanic Cloud (SMC). OGLE I-band data of up to 11 years of semi-continuous monitoring has been analysed for SMC X-2, SXP172 and SXP202B, providing both a measurement of the orbital period (Porb = 18.62, 68.90, and 229.9 days for the pulsars respectively) and a detailed optical orbital profile for each pulsar. For SXP172 this has allowed a direct comparison of the optical and X-ray emission seen through regular RXTE monitoring, revealing that the X-ray outbursts precede the optical by around 7 days. Recent X-ray studies by XMM-Newton have identified a new source in the vicinity of SXP15.3 raising doubt on the identification of the optical counterpart to this X-ray pulsar. Here we present a discussion of the observations that led to the proposal of the original counterpart and a detailed optical analysis of the counterpart to the new X-ray source, identifying a 21.7 d periodicity in the OGLE I-band data. The optical characteristics of this star are consistent with that of a SMC Be/X-ray binary. However, this star was rejected as the counterpart to SXP15.3 in previous studies due to the lack of H{alpha} emission.
284 - H. Klus , W.C.G. Ho , M.J. Coe 2013
We report on the long-term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use these data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 s, have magnetic fields over the quantum critical level of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, of the order of 10^6-10^10 G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا