Do you want to publish a course? Click here

The Min-Max Complexity of Distributed Stochastic Convex Optimization with Intermittent Communication

250   0   0.0 ( 0 )
 Added by Blake Woodworth
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We resolve the min-max complexity of distributed stochastic convex optimization (up to a log factor) in the intermittent communication setting, where $M$ machines work in parallel over the course of $R$ rounds of communication to optimize the objective, and during each round of communication, each machine may sequentially compute $K$ stochastic gradient estimates. We present a novel lower bound with a matching upper bound that establishes an optimal algorithm.



rate research

Read More

We give nearly matching upper and lower bounds on the oracle complexity of finding $epsilon$-stationary points ($| abla F(x) | leqepsilon$) in stochastic convex optimization. We jointly analyze the oracle complexity in both the local stochastic oracle model and the global oracle (or, statistical learning) model. This allows us to decompose the complexity of finding near-stationary points into optimization complexity and sample complexity, and reveals some surprising differences between the complexity of stochastic optimization versus learning. Notably, we show that in the global oracle/statistical learning model, only logarithmic dependence on smoothness is required to find a near-stationary point, whereas polynomial dependence on smoothness is necessary in the local stochastic oracle model. In other words, the separation in complexity between the two models can be exponential, and that the folklore understanding that smoothness is required to find stationary points is only weakly true for statistical learning. Our upper bounds are based on extensions of a recent recursive regularization technique proposed by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates, and in particular show how to leverage the extra information available in the global oracle model. Our algorithm for the global model can be implemented efficiently through finite sum methods, and suggests an interesting new computational-statistical tradeoff.
Distributionally robust supervised learning (DRSL) is emerging as a key paradigm for building reliable machine learning systems for real-world applications -- reflecting the need for classifiers and predictive models that are robust to the distribution shifts that arise from phenomena such as selection bias or nonstationarity. Existing algorithms for solving Wasserstein DRSL -- one of the most popular DRSL frameworks based around robustness to perturbations in the Wasserstein distance -- involve solving complex subproblems or fail to make use of stochastic gradients, limiting their use in large-scale machine learning problems. We revisit Wasserstein DRSL through the lens of min-max optimization and derive scalable and efficiently implementable stochastic extra-gradient algorithms which provably achieve faster convergence rates than existing approaches. We demonstrate their effectiveness on synthetic and real data when compared to existing DRSL approaches. Key to our results is the use of variance reduction and random reshuffling to accelerate stochastic min-max optimization, the analysis of which may be of independent interest.
We note that known methods achieving the optimal oracle complexity for first order convex optimization require quadratic memory, and ask whether this is necessary, and more broadly seek to characterize the minimax number of first order queries required to optimize a convex Lipschitz function subject to a memory constraint.
Many popular learning-rate schedules for deep neural networks combine a decaying trend with local perturbations that attempt to escape saddle points and bad local minima. We derive convergence guarantees for bandwidth-based step-sizes, a general class of learning-rates that are allowed to vary in a banded region. This framework includes cyclic and non-monotonic step-sizes for which no theoretical guarantees were previously known. We provide worst-case guarantees for SGD on smooth non-convex problems under several bandwidth-based step sizes, including stagewise $1/sqrt{t}$ and the popular step-decay (constant and then drop by a constant), which is also shown to be optimal. Moreover, we show that its momentum variant (SGDM) converges as fast as SGD with the bandwidth-based step-decay step-size. Finally, we propose some novel step-size schemes in the bandwidth-based family and verify their efficiency on several deep neural network training tasks.
We provide a first-order oracle complexity lower bound for finding stationary points of min-max optimization problems where the objective function is smooth, nonconvex in the minimization variable, and strongly concave in the maximization variable. We establish a lower bound of $Omegaleft(sqrt{kappa}epsilon^{-2}right)$ for deterministic oracles, where $epsilon$ defines the level of approximate stationarity and $kappa$ is the condition number. Our analysis shows that the upper bound achieved in (Lin et al., 2020b) is optimal in the $epsilon$ and $kappa$ dependence up to logarithmic factors. For stochastic oracles, we provide a lower bound of $Omegaleft(sqrt{kappa}epsilon^{-2} + kappa^{1/3}epsilon^{-4}right)$. It suggests that there is a significant gap between the upper bound $mathcal{O}(kappa^3 epsilon^{-4})$ in (Lin et al., 2020a) and our lower bound in the condition number dependence.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا