No Arabic abstract
Many popular learning-rate schedules for deep neural networks combine a decaying trend with local perturbations that attempt to escape saddle points and bad local minima. We derive convergence guarantees for bandwidth-based step-sizes, a general class of learning-rates that are allowed to vary in a banded region. This framework includes cyclic and non-monotonic step-sizes for which no theoretical guarantees were previously known. We provide worst-case guarantees for SGD on smooth non-convex problems under several bandwidth-based step sizes, including stagewise $1/sqrt{t}$ and the popular step-decay (constant and then drop by a constant), which is also shown to be optimal. Moreover, we show that its momentum variant (SGDM) converges as fast as SGD with the bandwidth-based step-decay step-size. Finally, we propose some novel step-size schemes in the bandwidth-based family and verify their efficiency on several deep neural network training tasks.
We design an algorithm which finds an $epsilon$-approximate stationary point (with $| abla F(x)|le epsilon$) using $O(epsilon^{-3})$ stochastic gradient and Hessian-vector products, matching guarantees that were previously available only under a stronger assumption of access to multiple queries with the same random seed. We prove a lower bound which establishes that this rate is optimal and---surprisingly---that it cannot be improved using stochastic $p$th order methods for any $pge 2$, even when the first $p$ derivatives of the objective are Lipschitz. Together, these results characterize the complexity of non-convex stochastic optimization with second-order methods and beyond. Expanding our scope to the oracle complexity of finding $(epsilon,gamma)$-approximate second-order stationary points, we establish nearly matching upper and lower bounds for stochastic second-order methods. Our lower bounds here are novel even in the noiseless case.
Reducing the variance of the gradient estimator is known to improve the convergence rate of stochastic gradient-based optimization and sampling algorithms. One way of achieving variance reduction is to design importance sampling strategies. Recently, the problem of designing such schemes was formulated as an online learning problem with bandit feedback, and algorithms with sub-linear static regret were designed. In this work, we build on this framework and propose Avare, a simple and efficient algorithm for adaptive importance sampling for finite-sum optimization and sampling with decreasing step-sizes. Under standard technical conditions, we show that Avare achieves $mathcal{O}(T^{2/3})$ and $mathcal{O}(T^{5/6})$ dynamic regret for SGD and SGLD respectively when run with $mathcal{O}(1/t)$ step sizes. We achieve this dynamic regret bound by leveraging our knowledge of the dynamics defined by the algorithm, and combining ideas from online learning and variance-reduced stochastic optimization. We validate empirically the performance of our algorithm and identify settings in which it leads to significant improvements.
Gradient clipping is commonly used in training deep neural networks partly due to its practicability in relieving the exploding gradient problem. Recently, citet{zhang2019gradient} show that clipped (stochastic) Gradient Descent (GD) converges faster than vanilla GD/SGD via introducing a new assumption called $(L_0, L_1)$-smoothness, which characterizes the violent fluctuation of gradients typically encountered in deep neural networks. However, their iteration complexities on the problem-dependent parameters are rather pessimistic, and theoretical justification of clipping combined with other crucial techniques, e.g. momentum acceleration, are still lacking. In this paper, we bridge the gap by presenting a general framework to study the clipping algorithms, which also takes momentum methods into consideration. We provide convergence analysis of the framework in both deterministic and stochastic setting, and demonstrate the tightness of our results by comparing them with existing lower bounds. Our results imply that the efficiency of clipping methods will not degenerate even in highly non-smooth regions of the landscape. Experiments confirm the superiority of clipping-based methods in deep learning tasks.
We investigate 1) the rate at which refined properties of the empirical risk---in particular, gradients---converge to their population counterparts in standard non-convex learning tasks, and 2) the consequences of this convergence for optimization. Our analysis follows the tradition of norm-based capacity control. We propose vector-valued Rademacher complexities as a simple, composable, and user-friendly tool to derive dimension-free uniform convergence bounds for gradients in non-convex learning problems. As an application of our techniques, we give a new analysis of batch gradient descent methods for non-convex generalized linear models and non-convex robust regression, showing how to use any algorithm that finds approximate stationary points to obtain optimal sample complexity, even when dimension is high or possibly infinite and multiple passes over the dataset are allowed. Moving to non-smooth models we show----in contrast to the smooth case---that even for a single ReLU it is not possible to obtain dimension-independent convergence rates for gradients in the worst case. On the positive side, it is still possible to obtain dimension-independent rates under a new type of distributional assumption.
We give nearly matching upper and lower bounds on the oracle complexity of finding $epsilon$-stationary points ($| abla F(x) | leqepsilon$) in stochastic convex optimization. We jointly analyze the oracle complexity in both the local stochastic oracle model and the global oracle (or, statistical learning) model. This allows us to decompose the complexity of finding near-stationary points into optimization complexity and sample complexity, and reveals some surprising differences between the complexity of stochastic optimization versus learning. Notably, we show that in the global oracle/statistical learning model, only logarithmic dependence on smoothness is required to find a near-stationary point, whereas polynomial dependence on smoothness is necessary in the local stochastic oracle model. In other words, the separation in complexity between the two models can be exponential, and that the folklore understanding that smoothness is required to find stationary points is only weakly true for statistical learning. Our upper bounds are based on extensions of a recent recursive regularization technique proposed by Allen-Zhu (2018). We show how to extend the technique to achieve near-optimal rates, and in particular show how to leverage the extra information available in the global oracle model. Our algorithm for the global model can be implemented efficiently through finite sum methods, and suggests an interesting new computational-statistical tradeoff.