Do you want to publish a course? Click here

AURSAD: Universal Robot Screwdriving Anomaly Detection Dataset

43   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Screwdriving is one of the most popular industrial processes. As such, it is increasingly common to automate that procedure by using various robots. Even though the automation increases the efficiency of the screwdriving process, if the process is not monitored correctly, faults may occur during operation, which can impact the effectiveness and quality of assembly. Machine Learning (ML) has the potential to detect those undesirable events and limit their impact. In order to do so, first a dataset that fully describes the operation of an industrial robot performing automated screwdriving must be available. This report describes a dataset created using a UR3e series robot and OnRobot Screwdriver. We create different scenarios and introduce 4 types of anomalies to the process while all available robot and screwdriver sensors are continuously recorded. The resulting data contains 2042 samples of normal and anomalous robot operation. Brief ML benchmarks using this data are also provided, showcasing the datas suitability and potential for further analysis and experimentation.



rate research

Read More

Detecting faults in manufacturing applications can be difficult, especially if each fault model is to be engineered by hand. Data-driven approaches, using Machine Learning (ML) for detecting faults have recently gained increasing interest, where a ML model can be trained on a set of data from a manufacturing process. In this paper, we present a use case of using ML models for detecting faults during automated screwdriving operations, and introduce a new dataset containing fully monitored and registered data from a Universal Robot and OnRobot screwdriver during both normal and anomalous operations. We illustrate, with the use of two time-series ML models, how to detect faults in an automated screwdriving application.
It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in high confidence. But most of the existing adversarial attacks have high success rate only when the information of the attacked DNN is well-known or could be estimated by massive queries. A promising way is to generate adversarial samples with high transferability. By this way, we generate 96020 transferable adversarial samples from original ones in ImageNet. The average difference, measured by root means squared deviation, is only around 3.8 on average. However, the adversarial samples are misclassified by various models with an error rate up to 90%. Since the images are generated independently with the attacked DNNs, this is essentially zero-query adversarial attack. We call the dataset emph{DAmageNet}, which is the first universal adversarial dataset that beats many models trained in ImageNet. By finding the drawbacks, DAmageNet could serve as a benchmark to study and improve robustness of DNNs. DAmageNet could be downloaded in http://www.pami.sjtu.edu.cn/Show/56/122.
We propose OneFlow - a flow-based one-class classifier for anomaly (outliers) detection that finds a minimal volume bounding region. Contrary to density-based methods, OneFlow is constructed in such a way that its result typically does not depend on the structure of outliers. This is caused by the fact that during training the gradient of the cost function is propagated only over the points located near to the decision boundary (behavior similar to the support vectors in SVM). The combination of flow models and Bernstein quantile estimator allows OneFlow to find a parametric form of bounding region, which can be useful in various applications including describing shapes from 3D point clouds. Experiments show that the proposed model outperforms related methods on real-world anomaly detection problems.
In this article we present a novel underwater dataset collected from several field trials within the EU FP7 project Cognitive autonomous diving buddy (CADDY), where an Autonomous Underwater Vehicle (AUV) was used to interact with divers and monitor their activities. To our knowledge, this is one of the first efforts to collect a large dataset in underwater environments targeting object classification, segmentation and human pose estimation tasks. The first part of the dataset contains stereo camera recordings (~10K) of divers performing hand gestures to communicate and interact with an AUV in different environmental conditions. These gestures samples serve to test the robustness of object detection and classification algorithms against underwater image distortions i.e., color attenuation and light backscatter. The second part includes stereo footage (~12.7K) of divers free-swimming in front of the AUV, along with synchronized IMUs measurements located throughout the divers suit (DiverNet) which serve as ground-truth for human pose and tracking methods. In both cases, these rectified images allow investigation of 3D representation and reasoning pipelines from low-texture targets commonly present in underwater scenarios. In this paper we describe our recording platform, sensor calibration procedure plus the data format and the utilities provided to use the dataset.
This paper explores the use of a Bayesian non-parametric topic modeling technique for the purpose of anomaly detection in video data. We present results from two experiments. The first experiment shows that the proposed technique is automatically able characterize the underlying terrain, and detect anomalous flora in image data collected by an underwater robot. The second experiment shows that the same technique can be used on images from a static camera in a dynamic unstructured environment. In the second dataset, consisting of video data from a static seafloor camera capturing images of a busy coral reef, the proposed technique was able to detect all three instances of an underwater vehicle passing in front of the camera, amongst many other observations of fishes, debris, lighting changes due to surface waves, and benthic flora.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا