Do you want to publish a course? Click here

DAmageNet: A Universal Adversarial Dataset

71   0   0.0 ( 0 )
 Added by Sizhe Chen
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

It is now well known that deep neural networks (DNNs) are vulnerable to adversarial attack. Adversarial samples are similar to the clean ones, but are able to cheat the attacked DNN to produce incorrect predictions in high confidence. But most of the existing adversarial attacks have high success rate only when the information of the attacked DNN is well-known or could be estimated by massive queries. A promising way is to generate adversarial samples with high transferability. By this way, we generate 96020 transferable adversarial samples from original ones in ImageNet. The average difference, measured by root means squared deviation, is only around 3.8 on average. However, the adversarial samples are misclassified by various models with an error rate up to 90%. Since the images are generated independently with the attacked DNNs, this is essentially zero-query adversarial attack. We call the dataset emph{DAmageNet}, which is the first universal adversarial dataset that beats many models trained in ImageNet. By finding the drawbacks, DAmageNet could serve as a benchmark to study and improve robustness of DNNs. DAmageNet could be downloaded in http://www.pami.sjtu.edu.cn/Show/56/122.



rate research

Read More

Adversarial attacks on deep neural networks (DNNs) have been found for several years. However, the existing adversarial attacks have high success rates only when the information of the victim DNN is well-known or could be estimated by the structure similarity or massive queries. In this paper, we propose to Attack on Attention (AoA), a semantic property commonly shared by DNNs. AoA enjoys a significant increase in transferability when the traditional cross entropy loss is replaced with the attention loss. Since AoA alters the loss function only, it could be easily combined with other transferability-enhancement techniques and then achieve SOTA performance. We apply AoA to generate 50000 adversarial samples from ImageNet validation set to defeat many neural networks, and thus name the dataset as DAmageNet. 13 well-trained DNNs are tested on DAmageNet, and all of them have an error rate over 85%. Even with defenses or adversarial training, most models still maintain an error rate over 70% on DAmageNet. DAmageNet is the first universal adversarial dataset. It could be downloaded freely and serve as a benchmark for robustness testing and adversarial training.
Few-shot dataset generalization is a challenging variant of the well-studied few-shot classification problem where a diverse training set of several datasets is given, for the purpose of training an adaptable model that can then learn classes from new datasets using only a few examples. To this end, we propose to utilize the diverse training set to construct a universal template: a partial model that can define a wide array of dataset-specialized models, by plugging in appropriate components. For each new few-shot classification problem, our approach therefore only requires inferring a small number of parameters to insert into the universal template. We design a separate network that produces an initialization of those parameters for each given task, and we then fine-tune its proposed initialization via a few steps of gradient descent. Our approach is more parameter-efficient, scalable and adaptable compared to previous methods, and achieves the state-of-the-art on the challenging Meta-Dataset benchmark.
We study the problem of learning classifiers robust to universal adversarial perturbations. While prior work approaches this problem via robust optimization, adversarial training, or input transformation, we instead phrase it as a two-player zero-sum game. In this new formulation, both players simultaneously play the same game, where one player chooses a classifier that minimizes a classification loss whilst the other player creates an adversarial perturbation that increases the same loss when applied to every sample in the training set. By observing that performing a classification (respectively creating adversarial samples) is the best response to the other player, we propose a novel extension of a game-theoretic algorithm, namely fictitious play, to the domain of training robust classifiers. Finally, we empirically show the robustness and versatility of our approach in two defence scenarios where universal attacks are performed on several image classification datasets -- CIFAR10, CIFAR100 and ImageNet.
We propose a new adversarial attack to Deep Neural Networks for image classification. Different from most existing attacks that directly perturb input pixels, our attack focuses on perturbing abstract features, more specifically, features that denote styles, including interpretable styles such as vivid colors and sharp outlines, and uninterpretable ones. It induces model misclassfication by injecting imperceptible style changes through an optimization procedure. We show that our attack can generate adversarial samples that are more natural-looking than the state-of-the-art unbounded attacks. The experiment also supports that existing pixel-space adversarial attack detection and defense techniques can hardly ensure robustness in the style related feature space.
Memorization in over-parameterized neural networks could severely hurt generalization in the presence of mislabeled examples. However, mislabeled examples are hard to avoid in extremely large datasets collected with weak supervision. We address this problem by reasoning counterfactually about the loss distribution of examples with uniform random labels had they were trained with the real examples, and use this information to remove noisy examples from the training set. First, we observe that examples with uniform random labels have higher losses when trained with stochastic gradient descent under large learning rates. Then, we propose to model the loss distribution of the counterfactual examples using only the network parameters, which is able to model such examples with remarkable success. Finally, we propose to remove examples whose loss exceeds a certain quantile of the modeled loss distribution. This leads to On-the-fly Data Denoising (ODD), a simple yet effective algorithm that is robust to mislabeled examples, while introducing almost zero computational overhead compared to standard training. ODD is able to achieve state-of-the-art results on a wide range of datasets including real-world ones such as WebVision and Clothing1M.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا