Recently multi-access coded caching schemes with number of users different from the number of caches obtained from a special case of resolvable designs called Cross Resolvable Designs (CRDs) have been reported and a new performance metric called rate-per-user has been introduced cite{KNRarXiv}. In this paper we present a generalization of this work resulting in multi-access coded caching schemes with improved rate-per-user.
Multi-access coded caching schemes from cross resolvable designs (CRD) have been reported recently cite{KNRarXiv}. To be able to compare coded caching schemes with different number of users and possibly with different number of caches a new metric called rate-per-user was introduced and it was shown that under this new metric the schemes from CRDs perform better than the Maddah-Ali-Niesen scheme in the large memory regime. In this paper a new class of CRDs is presented and it is shown that the multi-access coded caching schemes derived from these CRDs perform better than the Maddah-Ali-Niesen scheme in the entire memory regime. Comparison with other known multi-access coding schemes is also presented.
The multi-access variant of the coded caching problem in the presence of an external wiretapper is investigated . A multi-access coded caching scheme with $K$ users, $K$ caches and $N$ files, where each user has access to $L$ neighbouring caches in a cyclic wrap-around manner, is proposed, which is secure against the wiretappers. Each transmission in the conventional insecure scheme will be now encrypted by a random key. The proposed scheme uses a novel technique for the key placement in the caches. It is also shown that the proposed secure multi-access coded caching scheme is within a constant multiplicative factor from the information-theoretic optimal rate for $Lgeq frac{K}{2}$ and $Ngeq 2K$.
The demand private coded caching problem in a multi-access network with $K$ users and $K$ caches, where each user has access to $L$ neighbouring caches in a cyclic wrap-around manner, is studied. The additional constraint imposed is that one user should not get any information regarding the demands of the remaining users. A lifting construction of demand private multi-access coded caching scheme from conventional, non-private multi-access scheme is introduced. The demand-privacy for a user is ensured by placing some additional textit{keys} in a set of caches called the textit{private set} of that user. For a given $K$ and $L$, a technique is also devised to find the private sets of the users.
In an $(H,r)$ combination network, a single content library is delivered to ${Hchoose r}$ users through deployed $H$ relays without cache memories, such that each user with local cache memories is simultaneously served by a different subset of $r$ relays on orthogonal non-interfering and error-free channels. The combinatorial placement delivery array (CPDA in short) can be used to realize a coded caching scheme for combination networks. In this paper, a new algorithm realizing a coded caching scheme for combination network based on a CPDA is proposed such that the schemes obtained have smaller subpacketization levels or are implemented more flexible than the previously known schemes. Then we focus on directly constructing CPDAs for any positive integers $H$ and $r$ with $r<H$. This is different from the grouping method in reference (IEEE ISIT, 17-22, 2018) under the constraint that $r$ divides $H$. Consequently two classes of CPDAs are obtained. Finally comparing to the schemes and the method proposed by Yan et al., (IEEE ISIT, 17-22, 2018) the schemes realized by our CPDAs have significantly advantages on the subpacketization levels and the transmission rates.
Coded caching schemes with low subpacketization and small transmission rate are desirable in practice due to the requirement of low implementation complexity and efficiency of the transmission. Placement delivery arrays (PDA in short) can be used to generate coded caching schemes. However, many known coded caching schemes have large memory ratios. In this paper, we realize that some schemes with low subpacketization generated by PDAs do not fully use the users caching content to create multicasting opportunities and thus propose to overcome this drawback. As an application, we obtain two new schemes with low subpacketizations, which have significantly advantages on the memory ratio and transmission rate compared with the original scheme.