No Arabic abstract
In the forthcoming decades, the redshift drift observations in optical and radio bands will provide accurate measurements on $H(z)$ covering the redshift ranges of $2<z<5$ and $0<z<1$. In addition, gravitational wave (GW) standard siren observations could make measurements on the dipole anisotropy of luminosity distance, which will also provide the $H(z)$ measurements in the redshift range of $0<z<3$. In this work, we propose a multi-messenger and multi-wavelength observational strategy to measure $H(z)$ based on the three next-generation projects, E-ELT, SKA, and DECIGO, and we wish to see whether the future $H(z)$ measurements could provide tight constraints on dark-energy parameters. It is found that E-ELT, SKA1, and DECIGO are highly complementary in constraining dark energy models using the $H(z)$ data. We find that E-ELT, SKA1, and DECIGO can tightly constrain $Omega_m$, $w$ (or $w_0$), and $H_0$, respectively, and thus the combination of them could effectively break the cosmological parameter degeneracies. The joint E-ELT+SKA1+DECIGO data give $sigma(w)approx 0.02$ in the $w$CDM model and $sigma(w_0)approx 0.03$ in the CPL model, which are better than the results of {it Planck} 2018 TT,TE,EE+lowE+lensing+SNe+BAO. But even the joint data cannot well constrain $w_a$ in the CPL model.
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instability difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter $w$ evolving across the phantom divide $w=-1$ in the HDE model with $c<1$. We thus derive the evolutions of density perturbations of various components and metric fluctuations in the HDE model. The impacts of massive neutrino and dark radiation on the CMB anisotropy power spectrum and the matter power spectrum in the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear data of weak lensing, the Planck CMB lensing data, and the redshift space distortions data. We find that $sum m_ u<0.186$ eV (95% CL) and $N_{rm eff}=3.75^{+0.28}_{-0.32}$ in the HDE model from the constraints of these data.
We argue that dark energy with multiple fields is theoretically well-motivated and predicts distinct observational signatures, in particular when cosmic acceleration takes place along a trajectory that is highly non-geodesic in field space. Such models provide novel physics compared to $Lambda$CDM and quintessence by allowing cosmic acceleration on steep potentials. From the theoretical point of view, these theories can easily satisfy the conjectured swampland constraints and may in certain cases be technically natural, potential problems which are endemic to standard single-field dark energy. Observationally, we argue that while such multi-field models are likely to be largely indistinguishable from the concordance cosmology at the background level, dark energy perturbations can cluster, leading to an enhanced growth of large-scale structure that may be testable as early as the next generation of cosmological surveys.
This paper details the modeling pipeline and validates the baseline analysis choices of the DES Year 3 joint analysis of galaxy clustering and weak lensing (a so-called 3$times$2pt analysis). These analysis choices include the specific combination of cosmological probes, priors on cosmological and systematics parameters, model parameterizations for systematic effects and related approximations, and angular scales where the model assumptions are validated. We run a large number of simulated likelihood analyses using synthetic data vectors to test the robustness of our baseline analysis. We demonstrate that the DES Year 3 modeling pipeline, including the calibrated scale cuts, is sufficiently accurate relative to the constraining power of the DES Year 3 analyses. Our systematics mitigation strategy accounts for astrophysical systematics, such as galaxy bias, intrinsic alignments, source and lens magnification, baryonic effects, and source clustering, as well as for uncertainties in modeling the matter power spectrum, reduced shear, and estimator effects. We further demonstrate excellent agreement between two independently-developed modeling pipelines, and thus rule out any residual uncertainties due to the numerical implementation.
For a general dark-energy equation of state, we estimate the maximum possible radius of massive structures that are not destabilized by the acceleration of the cosmological expansion. A comparison with known stable structures constrains the equation of state. The robustness of the constraint can be enhanced through the accumulation of additional astrophysical data and a better understanding of the dynamics of bound cosmic structures.
We study the cosmological constant ($Lambda$) in the standard $Lambda$CDM model by introducing the textit{graduated dark energy} (gDE) characterised by a minimal dynamical deviation from the null inertial mass density of the $Lambda$ in the form $rho_{rm inert}propto rho^{lambda}<0$ with $lambda<1$ being a ratio of two odd integers, for which its energy density $rho$ dynamically takes negative values in the finite past. For large negative values of $lambda$, it creates a phenomenological model described by a smooth function that approximately describes the $Lambda$ spontaneously switching sign in the late universe to become positive today. We confront the model with the latest combined observational data sets of PLK+BAO+SN+$H$. It is striking that the data predict bimodal posterior probability distributions for the parameters of the model along with large negative $lambda$ values; the new maximum significantly excludes the $Lambda$, and the old maximum contains the $Lambda$. The improvement in the goodness of fit for the $Lambda$ reaches highly significant levels, $Deltachi_{rm min}^2=6.4$ for the new maxima, while it remains at insignificant levels, $Deltachi_{rm min}^2lesssim0.02$, for the old maxima. We show that, in contrast to the old maxima, which do not distinguish from the $Lambda$, the new maxima agree with the model-independent $H_0$ measurements, high-precision Ly-$alpha$ data, and model-independent $Omh^2$ diagnostic estimates. Our results provide strong hints of a spontaneous sign switch in the cosmological constant and lead us to conjecture that the universe has transitioned from AdS vacua to dS vacua, at a redshift $zapprox 2.32$ and triggered the late-time acceleration, and suggests looking for such mechanisms in string theory constructions.