Do you want to publish a course? Click here

Rich Prosody Diversity Modelling with Phone-level Mixture Density Network

333   0   0.0 ( 0 )
 Added by Chenpeng Du
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Generating natural speech with diverse and smooth prosody pattern is a challenging task. Although random sampling with phone-level prosody distribution has been investigated to generate different prosody patterns, the diversity of the generated speech is still very limited and far from what can be achieved by human. This is largely due to the use of uni-modal distribution, such as single Gaussian, in the prior works of phone-level prosody modelling. In this work, we propose a novel approach that models phone-level prosodies with GMM based mixture density network (GMM-MDN). Experiments on the LJSpeech dataset demonstrate that phone-level prosodies can precisely control the synthetic speech and GMM-MDN can generate more natural and smooth prosody pattern than a single Gaussian. Subjective evaluations further show that the proposed approach not only achieves better naturalness, but also significantly improves the prosody diversity in synthetic speech without the need of manual control.



rate research

Read More

76 - Chenpeng Du , Kai Yu 2021
Generating natural speech with diverse and smooth prosody pattern is a challenging task. Although random sampling with phone-level prosody distribution has been investigated to generate different prosody patterns, the diversity of the generated speech is still very limited and far from what can be achieved by human. This is largely due to the use of uni-modal distribution, such as single Gaussian, in the prior works of phone-level prosody modelling. In this work, we propose a novel approach that models phone-level prosodies with a GMM-based mixture density network and then extend it for multi-speaker TTS using speaker adaptation transforms of Gaussian means and variances. Furthermore, we show that we can clone the prosodies from a reference speech by sampling prosodies from the Gaussian components that produce the reference prosodies. Our experiments on LJSpeech and LibriTTS dataset show that the proposed GMM-based method not only achieves significantly better diversity than using a single Gaussian in both single-speaker and multi-speaker TTS, but also provides better naturalness. The prosody cloning experiments demonstrate that the prosody similarity of the proposed GMM-based method is comparable to recent proposed fine-grained VAE while the target speaker similarity is better.
100 - Shifeng Pan , Lei He 2021
Cross-speaker style transfer is crucial to the applications of multi-style and expressive speech synthesis at scale. It does not require the target speakers to be experts in expressing all styles and to collect corresponding recordings for model training. However, the performances of existing style transfer methods are still far behind real application needs. The root causes are mainly twofold. Firstly, the style embedding extracted from single reference speech can hardly provide fine-grained and appropriate prosody information for arbitrary text to synthesize. Secondly, in these models the content/text, prosody, and speaker timbre are usually highly entangled, its therefore not realistic to expect a satisfied result when freely combining these components, such as to transfer speaking style between speakers. In this paper, we propose a cross-speaker style transfer text-to-speech (TTS) model with explicit prosody bottleneck. The prosody bottleneck builds up the kernels accounting for speaking style robustly, and disentangles the prosody from content and speaker timbre, therefore guarantees high quality cross-speaker style transfer. Evaluation result shows the proposed method even achieves on-par performance with source speakers speaker-dependent (SD) model in objective measurement of prosody, and significantly outperforms the cycle consistency and GMVAE-based baselines in objective and subjective evaluations.
Text-to-speech systems recently achieved almost indistinguishable quality from human speech. However, the prosody of those systems is generally flatter than natural speech, producing samples with low expressiveness. Disentanglement of speaker id and prosody is crucial in text-to-speech systems to improve on naturalness and produce more variable syntheses. This paper proposes a new neural text-to-speech model that approaches the disentanglement problem by conditioning a Tacotron2-like architecture on flow-normalized speaker embeddings, and by substituting the reference encoder with a new learned latent distribution responsible for modeling the intra-sentence variability due to the prosody. By removing the reference encoder dependency, the speaker-leakage problem typically happening in this kind of systems disappears, producing more distinctive syntheses at inference time. The new model achieves significantly higher prosody variance than the baseline in a set of quantitative prosody features, as well as higher speaker distinctiveness, without decreasing the speaker intelligibility. Finally, we observe that the normalized speaker embeddings enable much richer speaker interpolations, substantially improving the distinctiveness of the new interpolated speakers.
100 - Zheng Lian , Zhengqi Wen 2019
In a typical voice conversion system, prior works utilize various acoustic features (e.g., the pitch, voiced/unvoiced flag, aperiodicity) of the source speech to control the prosody of generated waveform. However, the prosody is related with many factors, such as the intonation, stress and rhythm. It is a challenging task to perfectly describe the prosody through acoustic features. To deal with this problem, we propose prosody embeddings to model prosody. These embeddings are learned from the source speech in an unsupervised manner. We conduct experiments on our Mandarin corpus recoded by professional speakers. Experimental results demonstrate that the proposed method enables fine-grained control of the prosody. In challenging situations (such as the source speech is a singing song), our proposed method can also achieve promising results.
In voice conversion (VC), an approach showing promising results in the latest voice conversion challenge (VCC) 2020 is to first use an automatic speech recognition (ASR) model to transcribe the source speech into the underlying linguistic contents; these are then used as input by a text-to-speech (TTS) system to generate the converted speech. Such a paradigm, referred to as ASR+TTS, overlooks the modeling of prosody, which plays an important role in speech naturalness and conversion similarity. Although some researchers have considered transferring prosodic clues from the source speech, there arises a speaker mismatch during training and conversion. To address this issue, in this work, we propose to directly predict prosody from the linguistic representation in a target-speaker-dependent manner, referred to as target text prediction (TTP). We evaluate both methods on the VCC2020 benchmark and consider different linguistic representations. The results demonstrate the effectiveness of TTP in both objective and subjective evaluations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا