No Arabic abstract
It is always a challenging problem to deliver a huge volume of videos over the Internet. To meet the high bandwidth and stringent playback demand, one feasible solution is to cache video contents on edge servers based on predicted video popularity. Traditional caching algorithms (e.g., LRU, LFU) are too simple to capture the dynamics of video popularity, especially long-tailed videos. Recent learning-driven caching algorithms (e.g., DeepCache) show promising performance, however, such black-box approaches are lack of explainability and interpretability. Moreover, the parameter tuning requires a large number of historical records, which are difficult to obtain for videos with low popularity. In this paper, we optimize video caching at the edge using a white-box approach, which is highly efficient and also completely explainable. To accurately capture the evolution of video popularity, we develop a mathematical model called emph{HRS} model, which is the combination of multiple point processes, including Hawkes self-exciting, reactive and self-correcting processes. The key advantage of the HRS model is its explainability, and much less number of model parameters. In addition, all its model parameters can be learned automatically through maximizing the Log-likelihood function constructed by past video request events. Next, we further design an online HRS-based video caching algorithm. To verify its effectiveness, we conduct a series of experiments using real video traces collected from Tencent Video, one of the largest online video providers in China. Experiment results demonstrate that our proposed algorithm outperforms the state-of-the-art algorithms, with 12.3% improvement on average in terms of cache hit rate under realistic settings.
In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time.
In this paper, we formulate the collaborative multi-user wireless video transmission problem as a multi-user Markov decision process (MUMDP) by explicitly considering the users heterogeneous video traffic characteristics, time-varying network conditions and the resulting dynamic coupling between the wireless users. These environment dynamics are often ignored in existing multi-user video transmission solutions. To comply with the decentralized nature of wireless networks, we propose to decompose the MUMDP into local MDPs using Lagrangian relaxation. Unlike in conventional multi-user video transmission solutions stemming from the network utility maximization framework, the proposed decomposition enables each wireless user to individually solve its own dynamic cross-layer optimization (i.e. the local MDP) and the network coordinator to update the Lagrangian multipliers (i.e. resource prices) based on not only current, but also future resource needs of all users, such that the long-term video quality of all users is maximized. However, solving the MUMDP requires statistical knowledge of the experienced environment dynamics, which is often unavailable before transmission time. To overcome this obstacle, we then propose a novel online learning algorithm, which allows the wireless users to update their policies in multiple states during one time slot. This is different from conventional learning solutions, which often update one state per time slot. The proposed learning algorithm can significantly improve the learning performance, thereby dramatically improving the video quality experienced by the wireless users over time. Our simulation results demonstrate the efficiency of the proposed MUMDP framework as compared to conventional multi-user video transmission solutions.
We develop the optimal economical caching schemes in cache-enabled heterogeneous networks, while delivering multimedia video services with personalized viewing qualities to mobile users. By applying scalable video coding (SVC), each video file to be requested is divided into one base layer (BL) and several enhancement layers (ELs). In order to assign different transmission tasks, the serving small-cell base stations (SBSs) are grouped into K clusters. The SBSs are able to cache and cooperatively transmit BL and EL contents to the user. We analytically derive the expressions for successful transmission probability and ergodic service rate, and then the closed form of EConomical Efficiency (ECE) is obtained. In order to enhance the ECE performance, we formulate the ECE optimization problems for two cases. In the first case, with equal cache size equipped at each SBS, the layer caching indicator is determined. Since this problem is NP-hard, after the l0-norm approximation, the discrete optimization variables are relaxed to be continuous, and this relaxed problem is convex. Next, based on the optimal solution derived from the relaxed problem, we devise a greedystrategy based heuristic algorithm to achieve the near-optimal layer caching indicators. In the second case, the cache size for each SBS, the layer size and the layer caching indicator are jointly optimized. This problem is a mixed integer programming problem, which is more challenging. To effectively solve this problem, the original ECE maximization problem is divided into two subproblems. These two subproblems are iteratively solved until the original optimization problem is convergent. Numerical results verify the correctness of theoretical derivations. Additionally, compared to the most popular layer placement strategy, the performance superiority of the proposed SVC-based caching schemes is testified.
Due to differences in frame structure, existing multi-rate video encoding algorithms cannot be directly adapted to encoders utilizing special reference frames such as AV1 without introducing substantial rate-distortion loss. To tackle this problem, we propose a novel bayesian block structure inference model inspired by a modification to an HEVC-based algorithm. It estimates the posterior probabilistic distributions of block partitioning, and adapts early terminations in the RDO procedure accordingly. Experimental results show that the proposed method provides flexibility for controlling the tradeoff between speed and coding efficiency, and can achieve an average time saving of 36.1% (up to 50.6%) with negligible bitrate cost.
Recently, Mobile-Edge Computing (MEC) has arisen as an emerging paradigm that extends cloud-computing capabilities to the edge of the Radio Access Network (RAN) by deploying MEC servers right at the Base Stations (BSs). In this paper, we envision a collaborative joint caching and processing strategy for on-demand video streaming in MEC networks. Our design aims at enhancing the widely used Adaptive BitRate (ABR) streaming technology, where multiple bitra