No Arabic abstract
In multiview applications, multiple cameras acquire the same scene from different viewpoints and generally produce correlated video streams. This results in large amounts of highly redundant data. In order to save resources, it is critical to handle properly this correlation during encoding and transmission of the multiview data. In this work, we propose a correlation-aware packet scheduling algorithm for multi-camera networks, where information from all cameras are transmitted over a bottleneck channel to clients that reconstruct the multiview images. The scheduling algorithm relies on a new rate-distortion model that captures the importance of each view in the scene reconstruction. We propose a problem formulation for the optimization of the packet scheduling policies, which adapt to variations in the scene content. Then, we design a low complexity scheduling algorithm based on a trellis search that selects the subset of candidate packets to be transmitted towards effective multiview reconstruction at clients. Extensive simulation results confirm the gain of our scheduling algorithm when inter-source correlation information is used in the scheduler, compared to scheduling policies with no information about the correlation or non-adaptive scheduling policies. We finally show that increasing the optimization horizon in the packet scheduling algorithm improves the transmission performance, especially in scenarios where the level of correlation rapidly varies with time.
In multiview video systems, multiple cameras generally acquire the same scene from different perspectives, such that users have the possibility to select their preferred viewpoint. This results in large amounts of highly redundant data, which needs to be properly handled during encoding and transmission over resource-constrained channels. In this work, we study coding and transmission strategies in multicamera systems, where correlated sources send data through a bottleneck channel to a central server, which eventually transmits views to different interactive users. We propose a dynamic correlation-aware packet scheduling optimization under delay, bandwidth, and interactivity constraints. The optimization relies both on a novel rate-distortion model, which captures the importance of each view in the 3D scene reconstruction, and on an objective function that optimizes resources based on a client navigation model. The latter takes into account the distortion experienced by interactive clients as well as the distortion variations that might be observed by clients during multiview navigation. We solve the scheduling problem with a novel trellis-based solution, which permits to formally decompose the multivariate optimization problem thereby significantly reducing the computation complexity. Simulation results show the gain of the proposed algorithm compared to baseline scheduling policies. More in details, we show the gain offered by our dynamic scheduling policy compared to static camera allocation strategies and to schemes with constant coding strategies. Finally, we show that the best scheduling policy consistently adapts to the most likely user navigation path and that it minimizes distortion variations that can be very disturbing for users in traditional navigation systems.
It is always a challenging problem to deliver a huge volume of videos over the Internet. To meet the high bandwidth and stringent playback demand, one feasible solution is to cache video contents on edge servers based on predicted video popularity. Traditional caching algorithms (e.g., LRU, LFU) are too simple to capture the dynamics of video popularity, especially long-tailed videos. Recent learning-driven caching algorithms (e.g., DeepCache) show promising performance, however, such black-box approaches are lack of explainability and interpretability. Moreover, the parameter tuning requires a large number of historical records, which are difficult to obtain for videos with low popularity. In this paper, we optimize video caching at the edge using a white-box approach, which is highly efficient and also completely explainable. To accurately capture the evolution of video popularity, we develop a mathematical model called emph{HRS} model, which is the combination of multiple point processes, including Hawkes self-exciting, reactive and self-correcting processes. The key advantage of the HRS model is its explainability, and much less number of model parameters. In addition, all its model parameters can be learned automatically through maximizing the Log-likelihood function constructed by past video request events. Next, we further design an online HRS-based video caching algorithm. To verify its effectiveness, we conduct a series of experiments using real video traces collected from Tencent Video, one of the largest online video providers in China. Experiment results demonstrate that our proposed algorithm outperforms the state-of-the-art algorithms, with 12.3% improvement on average in terms of cache hit rate under realistic settings.
Interactive multi-view video streaming (IMVS) services permit to remotely immerse within a 3D scene. This is possible by transmitting a set of reference camera views (anchor views), which are used by the clients to freely navigate in the scene and possibly synthesize additional viewpoints of interest. From a networking perspective, the big challenge in IMVS systems is to deliver to each client the best set of anchor views that maximizes the navigation quality, minimizes the view-switching delay and yet satisfies the network constraints. Integrating adaptive streaming solutions in free-viewpoint systems offers a promising solution to deploy IMVS in large and heterogeneous scenarios, as long as the multi-view video representations on the server are properly selected. We therefore propose to optimize the multi-view data at the server by minimizing the overall resource requirements, yet offering a good navigation quality to the different users. We propose a video representation set optimization for multiview adaptive streaming systems and we show that it is NP-hard. We therefore introduce the concept of multi-view navigation segment that permits to cast the video representation set selection as an integer linear programming problem with a bounded computational complexity. We then show that the proposed solution reduces the computational complexity while preserving optimality in most of the 3D scenes. We then provide simulation results for different classes of users and show the gain offered by an optimal multi-view video representation selection compared to recommended representation sets (e.g., Netflix and Apple ones) or to a baseline representation selection algorithm where the encoding parameters are decided a priori for all the views.
We report results from a measurement study of three video streaming services, YouTube, Dailymotion and Vimeo on six different smartphones. We measure and analyze the traffic and energy consumption when streaming different quality videos over Wi-Fi and 3G. We identify five different techniques to deliver the video and show that the use of a particular technique depends on the device, player, quality, and service. The energy consumption varies dramatically between devices, services, and video qualities depending on the streaming technique used. As a consequence, we come up with suggestions on how to improve the energy efficiency of mobile video streaming services.
With the increasing demands on interactive video applications, how to adapt video bit rate to avoid network congestion has become critical, since congestion results in self-inflicted delay and packet loss which deteriorate the quality of real-time video service. The existing congestion control is hard to simultaneously achieve low latency, high throughput, good adaptability and fair bandwidth allocation, mainly because of the hardwired control strategy and egocentric convergence objective. To address these issues, we propose an end-to-end statistical learning based congestion control, named Iris. By exploring the underlying principles of self-inflicted delay, we reveal that congestion delay is determined by sending rate, receiving rate and network status, which inspires us to control video bit rate using a statistical-learning congestion control model. The key idea of Iris is to force all flows to converge to the same queue load, and adjust the bit rate by the model. All flows keep a small and fixed number of packets queuing in the network, thus the fair bandwidth allocation and low latency are both achieved. Besides, the adjustment step size of sending rate is updated by online learning, to better adapt to dynamically changing networks. We carried out extensive experiments to evaluate the performance of Iris, with the implementations of transport layer (UDP) and application layer (QUIC) respectively. The testing environment includes emulated network, real-world Internet and commercial LTE networks. Compared against TCP flavors and state-of-the-art protocols, Iris is able to achieve high bandwidth utilization, low latency and good fairness concurrently. Especially over QUIC, Iris is able to increase the video bitrate up to 25%, and PSNR up to 1dB.