Do you want to publish a course? Click here

Derivative-free Bayesian Inversion Using Multiscale Dynamics

61   0   0.0 ( 0 )
 Added by Urbain Vaes
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Inverse problems are ubiquitous because they formalize the integration of data with mathematical models. In many scientific applications the forward model is expensive to evaluate, and adjoint computations are difficult to employ; in this setting derivative-free methods which involve a small number of forward model evaluations are an attractive proposition. Ensemble Kalman based interacting particle systems (and variants such as consensus based and unscented Kalman approaches) have proven empirically successful in this context, but suffer from the fact that they cannot be systematically refined to return the true solution, except in the setting of linear forward models. In this paper, we propose a new derivative-free approach to Bayesian inversion, which may be employed for posterior sampling or for maximum a posteriori estimation, and may be systematically refined. The method relies on a fast/slow system of stochastic differential equations for the local approximation of the gradient of the log-likelihood appearing in a Langevin diffusion. Furthermore the method may be preconditioned by use of information from ensemble Kalman based methods (and variants), providing a methodology which leverages the documented advantages of those methods, whilst also being provably refineable. We define the methodology, highlighting its flexibility and many variants, provide a theoretical analysis of the proposed approach, and demonstrate its efficacy by means of numerical experiments.



rate research

Read More

The computer-assisted modeling of re-entrant production lines, and, in particular, simulation scalability, is attracting a lot of attention due to the importance of such lines in semiconductor manufacturing. Re-entrant flows lead to competition for processing capacity among the items produced, which significantly impacts their throughput time (TPT). Such production models naturally exhibit two time scales: a short one, characteristic of single items processed through individual machines, and a longer one, characteristic of the response time of the entire factory. Coarse-grained partial differential equations for the spatio-temporal evolution of a phase density were obtained through a kinetic theory approach in Armbruster et al. [2]. We take advantage of the time scale separation to directly solve such coarse-grained equations, even when we cannot derive them explicitly, through an equation-free computational approach. Short bursts of appropriately initialized stochastic fine-scale simulation are used to perform coarse projective integration on the phase density. The key step in this process is lifting: the construction of fine-scale, discrete realizations consistent with a given coarse-grained phase density field. We achieve this through computational evaluation of conditional distributions of a phase velocity at the limit of large item influxes.
Many physical systems are well described on domains which are relatively large in some directions but relatively thin in other directions. In this scenario we typically expect the system to have emergent structures that vary slowly over the large dimensions. For practical mathematical modelling of such systems we require efficient and accurate methodologies for reducing the dimension of the original system and extracting the emergent dynamics. Common mathematical approximations for determining the emergent dynamics often rely on self-consistency arguments or limits as the aspect ratio of the large and thin dimensions becomes unphysically infinite. Here we build on a new approach, previously establish for systems which are large in only one dimension, which analyses the dynamics at each cross-section of the domain with a rigorous multivariate Taylor series. Then centre manifold theory supports the local modelling of the systems emergent dynamics with coupling to neighbouring cross-sections treated as a non-autonomous forcing. The union over all cross-sections then provides powerful support for the existence and emergence of a centre manifold model global in the large finite domain. Quantitative error estimates are determined from the interactions between the cross-section coupling and both fast and slow dynamics. Two examples provide practical details of our methodology. The approach developed here may be used to quantify the accuracy of known approximations, to extend such approximations to mixed order modelling, and to open previously intractable modelling issues to new tools and insights.
The Equation-Free approach to efficient multiscale numerical computation marries trusted micro-scale simulations to a framework for numerical macro-scale reduction -- the patch dynamics scheme. A recent novel patch scheme empowered the Equation-Free approach to simulate systems containing shocks on the macro-scale. However, the scheme did not predict the formation of shocks accurately, and it could not simulate moving shocks. This article resolves both issues, as a first step in one spatial dimension, by embedding the Equation-Free, shock-resolving patch scheme within a classic framework for adaptive moving meshes. Our canonical micro-scale problems exhibit heterogeneous nonlinear advection and heterogeneous diffusion. We demonstrate many remarkable benefits from the moving patch scheme, including efficient and accurate macro-scale prediction despite the unknown macro-scale closure. Equation-free methods are here extended to simulate moving, forming and merging shocks without a priori knowledge of the existence or closure of the shocks. Whereas adaptive moving mesh equations are typically stiff, typically requiring small time-steps on the macro-scale, the moving macro-scale mesh of patches is typically not stiff given the context of the micro-scale time-steps required for the sub-patch dynamics.
A series of benchmarks based on the physical situation of phase inversion between two immiscible liquids is presented. These benchmarks aim at progressing toward the direct numerical simulation of two-phase flows. Several CFD codes developed in French laboratories and using either Volume-of-Fluid or Level-Set interface tracking methods are used to provide physical solutions of the benchmarks, convergence studies and code comparisons. Two typical configurations are retained, with integral scale Reynolds numbers of 13.700 and 433.000, respectively. The physics of the problem are probed through macroscopic quantities such as potential and kinetic energies, or enstrophy. In addition, scaling laws for the temporal decay of the kinetic energy are derived to check the physical relevance of the simulations. Finally the droplet size distribution is probed. Additional test problems are also reported to estimate the influence of viscous effects in the vicinity of the interface.
[abridged] Inversion techniques are the most powerful methods to obtain information about the thermodynamical and magnetic properties of solar and stellar atmospheres. In the last years, we have witnessed the development of highly sophisticated inversion codes that are now widely applied to spectro-polarimetric observations. The majority of these inversion codes are based on the optimization of a complicated non-linear merit function. However, no reliable and statistically well-defined confidence intervals can be obtained for the parameters inferred from the
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا