Do you want to publish a course? Click here

Second harmonic generation from Chalcogenide metasurfaces via mode coupling engineering

81   0   0.0 ( 0 )
 Added by Tapajyoti Das Gupta
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dielectric metasurfaces have shown prominent applications in nonlinear optics due to strong field enhancement and low dissipation losses at the nanoscale. Chalcogenide glasses are one of the promising materials for the observation of nonlinear effects due to their high intrinsic nonlinearities. Here, we demonstrate, experimentally and theoretically, that significant second harmonic generation can be obtained within amorphous chalcogenide based metasurfaces by relying on the coupling between lattice and particle resonances. We further show that the high quality factor resonance at the origin of the second harmonic generation can be tuned over a wide wavelength range using a simple and versatile fabrication approach. The measured second harmonic intensity is orders of magnitude higher than that from a deposited chalcogenide film, and more than three orders of magnitude higher than conventional plasmonic and Silicon-based structures. Fabricated via a simple and scalable technique, these all-dielectric architectures are ideal candidates for the design of flat non-linear optical components on flexible substrates.



rate research

Read More

89 - Junjun Ma , Fei Xie , Weijin Chen 2020
Second harmonic generation (SHG) is a coherent nonlinear phenomenon that plays an important role in laser color conversion. Lithium niobate (LN), which features both a large band gap and outstanding second-order nonlinearities, acts as an important optical material for nonlinear frequency conversion covering a wide spectral range from ultraviolet to mid-infrared. Here we experimentally demonstrate LN metasurfaces with controllable SHG properties. Distinct enhancements for the SHG efficiency are observed at Mie-resonances. And by changing the geometric parameters thus the resonances of the metasurfaces, we manage to selectively boost the SHG efficiency at different wavelengths. Our results would pave a way for developing with high flexibility the novel compact nonlinear light sources for applications, such as biosensing and optical communications.
158 - Tingting Liu , Shuyuan Xiao 2021
The ability to engineer nonlinear optical processes in all-dielectric nanostructures is both of fundamental interest and highly desirable for high-performance, robust, and miniaturized nonlinear optical devices. Herein, we propose a novel paradigm for the efficient tuning of second-harmonic generation (SHG) process in dielectric nanoantennas by integrating with chalcogenide phase change material. In a design with Ge$_{2}$Sb$_{2}$Te$_{5}$ (GST) film sandwiched between the AlGaAs nanoantennas and AlO$_{x}$ substrate, the nonlinear SHG signal from the AlGaAs nanoantennas can be boosted via the resonantly localized field induced by the optically-induced Mie-type resonances, and further modulated by exploiting the GST amorphous-to-crystalline phase change in a non-volatile, multi-level manner. The tuning strategy originates from the modulation of resonant conditions by changes in the refractive index of GST. With a thorough examination of tuning performances for different nanoantenna radii, a maximum modulation depth as high as 540$%$ is numerically demonstrated. This work not only reveals out the potential of GST in optical nonlinearity control, but also provides promising strategy in smart designing tunable and reconfigurable nonlinear optical devices, e.g., light emitters, modulators, and sensors.
Efficient frequency conversion techniques are crucial to the development of plasmonic metasurfaces for information processing and signal modulation. In principle, nanoscale electric-field confinement in nonlinear materials enables higher harmonic conversion efficiencies per unit volume than those attainable in bulk materials. Here we demonstrate efficient second-harmonic generation (SHG) in a serrated nanogap plasmonic geometry that generates steep electric field gradients on a dielectric metasurface. An ultrafast pump is used to control plasmon-induced electric fields in a thin-film material with inversion symmetry that, without plasmonic enhancement, does not exhibit an an even-order nonlinear optical response. The temporal evolution of the plasmonic near-field is characterized with ~100as resolution using a novel nonlinear interferometric technique. The ability to manipulate nonlinear signals in a metamaterial geometry as demonstrated here is indispensable both to understanding the ultrafast nonlinear response of nanoscale materials, and to producing active, optically reconfigurable plasmonic devices
Silica-based optical fibers are a workhorse of nonlinear optics. They have been used to demonstrate nonlinear phenomena such as solitons and self-phase modulation. Since the introduction of the photonic crystal fiber, they have found many exciting applications, such as supercontinuum white light sources and third-harmonic generation, among others. They stand out by their low loss, large interaction length, and the ability to engineer its dispersive properties, which compensate for the small chi(3) nonlinear coefficient. However, they have one fundamental limitation: due to the amorphous nature of silica, they do not exhibit second-order nonlinearity, except for minor contributions from surfaces. Here, we demonstrate significant second-harmonic generation in functionalized optical fibers with a monolayer of highly nonlinear MoS2 deposited on the fiber guiding core. The demonstration is carried out in a 3.5 mm short piece of exposed core fiber, which was functionalized in a scalable process CVD-based process, without a manual transfer step. This approach is scalable and can be generalized to other transition metal dichalcogenides and other waveguide systems. We achieve an enhancement of more than 1000x over a reference sample of equal length. Our simple proof-of-principle demonstration does not rely on either phase matching to fundamental modes, or ordered growth of monolayer crystals, suggesting that pathways for further improvement are within reach. Our results do not just demonstrate a new path towards efficient in-fiber SHG-sources, instead, they establish a platform with a new route to chi(2)-based nonlinear fiber optics, optoelectronics, and photonics platforms, integrated optical architectures, and active fiber networks.
We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically-protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie resonances of silicon nanoparticles. Variation of the pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform for the robust generation and transport of photons in topological photonic nanostructures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا