No Arabic abstract
This paper aims to build an estimate of an unknown density of the data with measurement error as a linear combination of functions from a dictionary. Inspired by the penalization approach, we propose the weighted Elastic-net penalized minimal $ell_2$-distance method for sparse coefficients estimation, where the adaptive weights come from sharp concentration inequalities. The optimal weighted tuning parameters are obtained by the first-order conditions holding with a high probability. Under local coherence or minimal eigenvalue assumptions, non-asymptotical oracle inequalities are derived. These theoretical results are transposed to obtain the support recovery with a high probability. Then, some numerical experiments for discrete and continuous distributions confirm the significant improvement obtained by our procedure when compared with other conventional approaches. Finally, the application is performed in a meteorology data set. It shows that our method has potency and superiority of detecting the shape of multi-mode density compared with other conventional approaches.
We undertake a precise study of the non-asymptotic properties of vanilla generative adversarial networks (GANs) and derive theoretical guarantees in the problem of estimating an unknown $d$-dimensional density $p^*$ under a proper choice of the class of generators and discriminators. We prove that the resulting density estimate converges to $p^*$ in terms of Jensen-Shannon (JS) divergence at the rate $(log n/n)^{2beta/(2beta+d)}$ where $n$ is the sample size and $beta$ determines the smoothness of $p^*.$ This is the first result in the literature on density estimation using vanilla GANs with JS rates faster than $n^{-1/2}$ in the regime $beta>d/2.$
We study minimax density estimation on the product space $mathbb{R}^{d_1}timesmathbb{R}^{d_2}$. We consider $L^p$-risk for probability density functions defined over regularity spaces that allow for different level of smoothness in each of the variables. Precisely, we study probabilities on Sobolev spaces with dominating mixed-smoothness. We provide the rate of convergence that is optimal even for the classical Sobolev spaces.
This paper is concerned with density estimation of directional data on the sphere. We introduce a procedure based on thresholding on a new type of spherical wavelets called {it needlets}. We establish a minimax result and prove its optimality. We are motivated by astrophysical applications, in particular in connection with the analysis of ultra high energy cosmic rays.
We investigate an algorithm named histogram transform ensembles (HTE) density estimator whose effectiveness is supported by both solid theoretical analysis and significant experimental performance. On the theoretical side, by decomposing the error term into approximation error and estimation error, we are able to conduct the following analysis: First of all, we establish the universal consistency under $L_1(mu)$-norm. Secondly, under the assumption that the underlying density function resides in the H{o}lder space $C^{0,alpha}$, we prove almost optimal convergence rates for both single and ensemble density estimators under $L_1(mu)$-norm and $L_{infty}(mu)$-norm for different tail distributions, whereas in contrast, for its subspace $C^{1,alpha}$ consisting of smoother functions, almost optimal convergence rates can only be established for the ensembles and the lower bound of the single estimators illustrates the benefits of ensembles over single density estimators. In the experiments, we first carry out simulations to illustrate that histogram transform ensembles surpass single histogram transforms, which offers powerful evidence to support the theoretical results in the space $C^{1,alpha}$. Moreover, to further exert the experimental performances, we propose an adaptive version of HTE and study the parameters by generating several synthetic datasets with diversities in dimensions and distributions. Last but not least, real data experiments with other state-of-the-art density estimators demonstrate the accuracy of the adaptive HTE algorithm.
This paper deals with the estimation of hidden periodicities in a non-linear regression model with stationary noise displaying cyclical dependence. Consistency and asymptotic normality are established for the least-squares estimates.