No Arabic abstract
The semiconductor-metal junction is one of the most critical factors for high performance electronic devices. In two-dimensional (2D) semiconductor devices, minimizing the voltage drop at this junction is particularly challenging and important. Despite numerous studies concerning contact resistance in 2D semiconductors, the exact nature of the buried interface under a three-dimensional (3D) metal remains unclear. Herein, we report the direct measurement of electrical and optical responses of 2D semiconductor-metal buried interfaces using a recently developed metal-assisted transfer technique to expose the buried interface which is then directly investigated using scanning probe techniques. We characterize the spatially varying electronic and optical properties of this buried interface with < 20 nm resolution. To be specific, potential, conductance and photoluminescence at the buried metal/MoS2 interface are correlated as a function of a variety of metal deposition conditions as well as the type of metal contacts. We observe that direct evaporation of Au on MoS2 induces a large strain of ~5% in the MoS2 which, coupled with charge transfer, leads to degenerate doping of the MoS2 underneath the contact. These factors lead to improvement of contact resistance to record values of 138 kohm-um, as measured using local conductance probes. This approach was adopted to characterize MoS2-In/Au alloy interfaces, demonstrating contact resistance as low as 63 kohm-um. Our results highlight that the MoS2/Metal interface is sensitive to device fabrication methods, and provides a universal strategy to characterize buried contact interfaces involving 2D semiconductors.
Van der Waals (vdW) semiconductors are attractive for highly scaled devices and heterogeneous integration since they can be isolated into self-passivated, two-dimensional (2D) layers that enable superior electrostatic control. These attributes have led to numerous demonstrations of field-effect devices ranging from transistors to triodes. By exploiting the controlled, substitutional doping schemes in covalently-bonded, three-dimensional (3D) semiconductors and the passivated surfaces of 2D semiconductors, one can construct devices that can exceed performance metrics of all-2D vdW heterojunctions. Here, we demonstrate, 2D/3D semiconductor heterojunctions using MoS2 as the prototypical 2D semiconductor laid upon Si and GaN as the 3D semiconductor layers. By tuning the Fermi levels in MoS2, we demonstrate devices that concurrently exhibit over seven orders of magnitude modulation in rectification ratios and conductance. Our results further suggest that the interface quality does not necessarily affect Fermi-level tuning at the junction opening up possibilities for novel 2D/3D heterojunction device architectures.
Filming and controlling plasmons at buried interfaces with nanometer (nm) and femtosecond (fs) resolution has yet to be achieved and is critical for next generation plasmonic/electronic devices. In this work, we use light to excite and shape a plasmonic interference pattern at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is filmed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at approximately 0.3c, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. These results, demonstrating dynamical imaging with PINEM, pave the way for the fs/nm visualization and control of plasmonic fields in advanced heterostructures based on novel 2D materials such as graphene, MoS$_2$, and ultrathin metal films.
By stacking various two-dimensional (2D) atomic crystals [1] on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties [2-5]. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging [6-10]. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images.
Recently, phosphorene electronic and optoelectronic prototype devices have been fabricated with various metal electrodes. We systematically explore for the first time the contact properties of monolayer (ML) phosphorene with a series of commonly used metals (Al, Ag. Cu, Au, Cr, Ni, Ti, and Pd) via both ab initio electronic structure calculations and more reliable quantum transport simulations. Strong interactions are found between all the checked metals, with the energy band structure of ML phosphorene destroyed. In terms of the quantum transport simulations, ML phosphorene forms a n-type Schottky contact with Au, Cu, Cr, Al, and Ag electrodes, with electron Schottky barrier heights (SBHs) of 0.30, 0.34, 0.37, 0.51, and 0.52 eV, respectively, and p-type Schottky contact with Ti, Ni, and Pd electrodes, with hole SBHs of 0.30, 0.26, and 0.16 eV, respectively. These results are in good agreement with available experimental data. Our findings not only provide an insight into the ML phosphorene-metal interfaces but also help in ML phosphorene based device design.
We point out that the effective channel for the interfacial thermal conductance, the inverse of Kapitza resistance, of metal-insulator/semiconductor interfaces is governed by the electron-phonon interaction mediated by the surface states allowed in a thin region near the interface. Our detailed calculations demonstrate that the interfacial thermal conductance across Pb/Pt/Al/Au-diamond interfaces are only slightly different among these metals, and reproduce well the experimental results of the interfacial thermal conductance across metal-diamond interfaces observed by Stoner et al. [Phys. Rev. Lett. 68, 1563 (1992)] and most recently by Hohensee et al. [Nature Commun. 6, 6578 (2015)].