Do you want to publish a course? Click here

Topology Optimization of Surface-enhanced Raman Scattering Substrates

75   0   0.0 ( 0 )
 Added by Ying Pan
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Surface-enhanced Raman spectroscopy is a powerful and versatile sensing method with a detection limit down to the single molecule level. In this article, we demonstrate how topology optimization (TopOpt) can be used for designing surface enhanced Raman scattering (SERS) substrates adhering to realistic fabrication constraints. As an example, we experimentally demonstrated a SERS enhancement factor of 5*10e4 for the 604 cm-1 Raman line of rhodamine 6G using metal nanostructures with a critical dimension of 20 nm. We then show that, by relaxing the fabrication constraints, TopOpt may be used to design SERS substrates with orders of magnitude larger enhancement factor. The results validate topology optimization as an effective method for engineering nanostructures with optimal performance and fabrication tolerance.



rate research

Read More

The graphene-enhanced Raman scattering of Rhodamine 6G molecules on pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates was studied. The uniformity of the Raman signal enhancement was studied by making large Raman maps. The relative enhancement of the Raman signal is demonstrated to be dependent on the functional groups, which was rationalized by the different doping levels of pristine, fluorinated and 4-nitrophenyl functionalized graphene substrates. The impact of the Fermi energy of graphene and the phonon energy of the molecules was considered together for the first time in order to explain the enhancement. Such approach enables to understand the enhancement without assuming anything about the uniformity of the molecules on the graphene surface. The agreement between the theory and our measured data was further demonstrated by varying excitation energy.
156 - Li Mao , Zhipeng Li , Biao Wu 2009
The quantum tunneling effects between two metallic plates are studied using the time dependent density functional theory. Results show that the tunneling is mainly dependent on the separation and the initial local field of the interstice between plates. The smaller separation and larger local field, the easier the electrons tunnels through the interstice. Our numerical calculation shows that when the separation is smaller than 0.6 nm the quantum tunneling dramatically reduce the enhancing ability of interstice between nanoparticles.
A constant height of gallium nitride (GaN) nanowires with graphene deposited on them is shown to have a strong enhancement of Raman scattering, whilst variable height nanowires fail to give such an enhancement. Scanning electron microscopy reveals a smooth graphene surface which is present when the GaN nanowires are uniform, whereas graphene on nanowires with substantial height differences is observed to be pierced and stretched by the uppermost nanowires. The energy shifts of the characteristic Raman bands confirms that these differences in the nanowire height has a significant impact on the local graphene strain and the carrier concentration. The images obtained by Kelvin probe force microscopy show clearly that the carrier concentration in graphene is modulated by the nanowire substrate and dependent on the nanowire density. Therefore, the observed surface enhanced Raman scattering for graphene deposited on GaN nanowires of comparable height is triggered by self-induced nano-gating to the graphene. However, no clear correlation of the enhancement with the strain or the carrier concentration of graphene was discovered.
Single-molecule detection with chemical specificity is a powerful and much desired tool for biology, chemistry, physics, and sensing technologies. Surface-enhanced spectroscopies enable single molecule studies, yet reliable substrates of adequate sensitivity are in short supply. We present a simple, scaleable substrate for surface-enhanced Raman spectroscopy (SERS) incorporating nanometer-scale electromigrated gaps between extended electrodes. Molecules in the nanogap active regions exhibit hallmarks of very high Raman sensitivity, including blinking and spectral diffusion. Electrodynamic simulations show plasmonic focusing, giving electromagnetic enhancements approaching those needed for single-molecule SERS.
The Dipole-Quadrupole theory of Surface Enhanced Hyper Raman Scattering (SEHRS), created by the authors is expounded in details. Peculiarities of the behavior of electromagnetic field on rough metal surfaces are considered. It is demonstrated that there is an enhancement of the dipole and quadrupole light-molecule interaction near the places with a large curvature. The expression for the SEHRS cross-section of symmetrical molecules, which consists of several contributions is obtained. Selection rules for the scattering contributions are obtained and a qualitative classification of the contributions after an enhancement degree is performed. Analysis of experimental spectra of pyrazine and phenazine, and also some another molecules is performed too. It is demonstrated a full coincidence of experimental regularities in these spectra with the theory suggested.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا