Do you want to publish a course? Click here

Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy

479   0   0.0 ( 0 )
 Added by Douglas Natelson
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

Single-molecule detection with chemical specificity is a powerful and much desired tool for biology, chemistry, physics, and sensing technologies. Surface-enhanced spectroscopies enable single molecule studies, yet reliable substrates of adequate sensitivity are in short supply. We present a simple, scaleable substrate for surface-enhanced Raman spectroscopy (SERS) incorporating nanometer-scale electromigrated gaps between extended electrodes. Molecules in the nanogap active regions exhibit hallmarks of very high Raman sensitivity, including blinking and spectral diffusion. Electrodynamic simulations show plasmonic focusing, giving electromagnetic enhancements approaching those needed for single-molecule SERS.



rate research

Read More

Surface-enhanced Raman spectroscopy is a powerful and versatile sensing method with a detection limit down to the single molecule level. In this article, we demonstrate how topology optimization (TopOpt) can be used for designing surface enhanced Raman scattering (SERS) substrates adhering to realistic fabrication constraints. As an example, we experimentally demonstrated a SERS enhancement factor of 5*10e4 for the 604 cm-1 Raman line of rhodamine 6G using metal nanostructures with a critical dimension of 20 nm. We then show that, by relaxing the fabrication constraints, TopOpt may be used to design SERS substrates with orders of magnitude larger enhancement factor. The results validate topology optimization as an effective method for engineering nanostructures with optimal performance and fabrication tolerance.
525 - Xuechao Yu , Jin Tao , Youde Shen 2014
Raman intensity of Rhodamine B (RhB) is enhanced by inserting a thin high k{appa} dielectric layer which reduces the surface plasmon damping at the gold-graphene interface. The results indicate that the Raman intensity increases sharply by plasmonic resonance enhancement while maintaining efficient fluorescence quenching with optimized dielectric layer thickness.
Spectroscopic analysis of large biomolecules is critical in a number of applications, including medical diagnostics and label-free biosensing. Recently, it has been shown that Raman spectroscopy of proteins can be used to diagnose some diseases, including a few types of cancer. These experiments have however been performed using traditional Raman spectroscopy and the development of the Surface enhanced Raman spectroscopy (SERS) assays suitable for large biomolecules could lead to a substantial decrease in the amount of specimen necessary for these experiments. We present a new method to achieve high local field enhancement in surface enhanced Raman spectroscopy through the simultaneous adjustment of the lattice plasmons and localized surface plasmon polaritons, in a periodic bilayer nanoantenna array resulting in a high enhancement factor over the sensing area, with relatively high uniformity. The proposed plasmonic nanostructure is comprised of two interacting nanoantenna layers, providing a sharp band-edge lattice plasmon mode and a wide-band localized surface plasmon for the separate enhancement of the pump and emitted Raman signals. We demonstrate the application of the proposed nanostructure for the spectral analysis of large biomolecules by binding a protein (streptavidin) selectively on the hot-spots between the two stacked layers, using a low concentration solution (100 nM) and we successfully acquire its SERS spectrum.
Ag nanorod arrays/dielectrics/mirror-structured multilayer thin-film are well known, highly sensitive surface-enhanced Raman scattering (SERS) substrates that enhance the Raman scattering cross-section by the interference of light. However, extracting biomarkers directly from human skin using these solid substrates is difficult. To overcome this problem, we propose a multilayer thin-film flake dispersion gel by centrifugal mixing of the multilayer thin-film and hydroxyethyl cellulose (HEC) gel. The multilayer thin-film was prepared by serial bideposition using the dynamic oblique angle deposition technique. The mixing process was optimized to obtain flakes of ~10 {mu}m so that the optical properties of the multilayer film can be preserved, and there is no risk of adverse effects on humans. The SERS features of the flakes dispersion gel were tested using 4, 4-bipyridine (BPY). The BPY molecules diffused through the highly porous gel within a few seconds, generating significant SERS signals. The multilayer film flakes dispersion gel showed a SERS signal about 20 times better than the gel-dispersed Ag nanorod arrays without a multilayer film structure. These SERS active flakes dispersion gel can be used directly on the skin surface to collect body fluids from sweat, for biomarker sensing.
152 - Li Mao , Zhipeng Li , Biao Wu 2009
The quantum tunneling effects between two metallic plates are studied using the time dependent density functional theory. Results show that the tunneling is mainly dependent on the separation and the initial local field of the interstice between plates. The smaller separation and larger local field, the easier the electrons tunnels through the interstice. Our numerical calculation shows that when the separation is smaller than 0.6 nm the quantum tunneling dramatically reduce the enhancing ability of interstice between nanoparticles.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا