Do you want to publish a course? Click here

Page Curve from Non-Markovianity

104   0   0.0 ( 0 )
 Added by Pengfei Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this letter, we use the exactly solvable Sachdev-Ye-Kitaev model to address the issue of entropy dynamics when an interacting quantum system is coupled to a non-Markovian environment. We find that at the initial stage, the entropy always increases linearly matching the Markovian result. When the system thermalizes with the environment at a sufficiently long time, if the environment temperature is low and the coupling between system and environment is weak, then the total thermal entropy is low and the entanglement between system and environment is also weak, which yields a small system entropy in the long-time steady state. This manifestation of non-Markovian effects of the environment forces the entropy to decrease in the later stage, which yields the Page curve for the entropy dynamics. We argue that this physical scenario revealed by the exact solution of the Sachdev-Ye-Kitaev model is universally applicable for general chaotic quantum many-body systems and can be verified experimentally in near future.

rate research

Read More

We develop a formalism for computing the non-linear response of interacting integrable systems. Our results are asymptotically exact in the hydrodynamic limit where perturbing fields vary sufficiently slowly in space and time. We show that spatially resolved nonlinear response distinguishes interacting integrable systems from noninteracting ones, exemplifying this for the Lieb-Liniger gas. We give a prescription for computing finite-temperature Drude weights of arbitrary order, which is in excellent agreement with numerical evaluation of the third-order response of the XXZ spin chain. We identify intrinsically nonperturbative regimes of the nonlinear response of integrable systems.
We study the Hubbard model with non-Hermitian asymmetric hopping terms. The conjugate hopping terms are introduced for two spin components so that the negative sign is canceled out. This ensures that the quantum Monte Carlo simulation is free from the negative sign problem. We analyze the antiferromagnetic order and its suppression by the non-Hermiticity.
We investigate a model system for the injection of fermionic particles from filled source sites into an empty chain. We study the ensuing dynamics for Hermitian as well as for non-Hermitian time evolution where the particles cannot return to the bath sites (quantum ratchet). A non-homogeneous hybridization between bath and chain sites permits transient currents in the chain. Non-interacting particles show decoherence in the thermodynamic limit: the average particle number and the average current density in the chain become stationary for long times, whereas the single-particle density matrix displays large fluctuations around its mean value. Using the numerical time-dependent density-matrix renormalization group ($t$-DMRG) method we demonstrate, on the other hand, that sizable density-density interactions between the particles introduce relaxation which is by orders of magnitudes faster than the decoherence processes.
Classical reversible cellular automata (CAs), which describe the discrete-time dynamics of classical degrees of freedom in a finite state-space, can exhibit exact, nonthermal quantum eigenstates despite being classically chaotic. We show that every classical CA defines a family of generically non-integrable, periodically-driven (Floquet) quantum dynamics with exact, nonthermal eigenstates. These Floquet dynamics are nonergodic in the sense that certain product states on a periodic classical orbit fail to thermalize, while generic initial states thermalize as expected in a quantum chaotic system. We demonstrate that some signatures of these effects can be probed in quantum simulators based on Rydberg atoms in the blockade regime. These results establish classical CAs as parent models for a class of quantum chaotic systems with rare nonthermal eigenstates.
In a recent paper (Phys. Rev. Lett. 123, 210602), Kozin and Kyriienko claim to realize genuine ground state time crystals by studying models with long-ranged and infinite-body interactions. Here we point out that their models are doubly problematic: they are unrealizable ${it and}$ they violate well established principles for defining phases of matter. Indeed with infinite body operators allowed, almost all quantum systems are time crystals. In addition, one of their models is highly unstable and another amounts to isolating, via fine tuning, a single degree of freedom in a many body system--allowing for this elevates the pendulum of Galileo and Huygens to a genuine time crystal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا