Do you want to publish a course? Click here

Human Inference in Changing Environments With Temporal Structure

60   0   0.0 ( 0 )
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

To make informed decisions in natural environments that change over time, humans must update their beliefs as new observations are gathered. Studies exploring human inference as a dynamical process that unfolds in time have focused on situations in which the statistics of observations are history-independent. Yet temporal structure is everywhere in nature, and yields history-dependent observations. Do humans modify their inference processes depending on the latent temporal statistics of their observations? We investigate this question experimentally and theoretically using a change-point inference task. We show that humans adapt their inference process to fine aspects of the temporal structure in the statistics of stimuli. As such, humans behave qualitatively in a Bayesian fashion, but, quantitatively, deviate away from optimality. Perhaps more importantly, humans behave suboptimally in that their responses are not deterministic, but variable. We show that this variability itself is modulated by the temporal statistics of stimuli. To elucidate the cognitive algorithm that yields this behavior, we investigate a broad array of existing and new models that characterize different sources of suboptimal deviations away from Bayesian inference. While models with output noise that corrupts the response-selection process are natural candidates, human behavior is best described by sampling-based inference models, in which the main ingredient is a compressed approximation of the posterior, represented through a modest set of random samples and updated over time. This result comes to complement a growing literature on sample-based representation and learning in humans.



rate research

Read More

We present a method to estimate Gibbs distributions with textit{spatio-temporal} constraints on spike trains statistics. We apply this method to spike trains recorded from ganglion cells of the salamander retina, in response to natural movies. Our analysis, restricted to a few neurons, performs more accurately than pairwise synchronization models (Ising) or the 1-time step Markov models (cite{marre-boustani-etal:09}) to describe the statistics of spatio-temporal spike patterns and emphasizes the role of higher order spatio-temporal interactions.
The anatomically layered structure of a human brain results in leveled functions. In all these levels of different functions, comparison, feedback and imitation are the universal and crucial mechanisms. Languages, symbols and tools play key roles in the development of human brain and entire civilization.
Neural electromagnetic (EM) signals recorded non-invasively from individual human subjects vary in complexity and magnitude. Nonetheless, variation in neural activity has been difficult to quantify and interpret, due to complex, broad-band features in the frequency domain. Studying signals recorded with magnetoencephalography (MEG) from healthy young adult subjects while in resting and active states, a systematic framework inspired by thermodynamics is applied to neural EM signals. Despite considerable inter-subject variation in terms of spectral entropy and energy across time epochs, data support the existence of a robust and linear relationship defining an effective state equation, with higher energy and lower entropy in the resting state compared to active, consistently across subjects. Mechanisms underlying the emergence of relationships between empirically measured effective state functions are further investigated using a model network of coupled oscillators, suggesting an interplay between noise and coupling strength can account for coherent variation of empirically observed quantities. Taken together, the results show macroscopic neural observables follow a robust, non-trivial conservation rule for energy modulation and information generation.
Active inference offers a first principle account of sentient behaviour, from which special and important cases can be derived, e.g., reinforcement learning, active learning, Bayes optimal inference, Bayes optimal design, etc. Active inference resolves the exploitation-exploration dilemma in relation to prior preferences, by placing information gain on the same footing as reward or value. In brief, active inference replaces value functions with functionals of (Bayesian) beliefs, in the form of an expected (variational) free energy. In this paper, we consider a sophisticated kind of active inference, using a recursive form of expected free energy. Sophistication describes the degree to which an agent has beliefs about beliefs. We consider agents with beliefs about the counterfactual consequences of action for states of affairs and beliefs about those latent states. In other words, we move from simply considering beliefs about what would happen if I did that to what would I believe about what would happen if I did that. The recursive form of the free energy functional effectively implements a deep tree search over actions and outcomes in the future. Crucially, this search is over sequences of belief states, as opposed to states per se. We illustrate the competence of this scheme, using numerical simulations of deep decision problems.
Nature is in constant flux, so animals must account for changes in their environment when making decisions. How animals learn the timescale of such changes and adapt their decision strategies accordingly is not well understood. Recent psychophysical experiments have shown humans and other animals can achieve near-optimal performance at two alternative forced choice (2AFC) tasks in dynamically changing environments. Characterization of performance requires the derivation and analysis of computational models of optimal decision-making policies on such tasks. We review recent theoretical work in this area, and discuss how models compare with subjects behavior in tasks where the correct choice or evidence quality changes in dynamic, but predictable, ways.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا