Do you want to publish a course? Click here

Large Zeeman Splitting in Out-of-Plane Magnetic Field in a Double-Layer Quantum Point Contact

83   0   0.0 ( 0 )
 Added by Daiju Terasawa
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we observe that the conductance of a quantum point contact on a GaAs/AlGaAs double quantum well depends significantly on the magnetic field perpendicular to the two-dimensional electron gas. In the presence of the magnetic field, the subband edge splitting due to the Zeeman energy reaches 0.09 meV at 0.16 T, thereby suggesting an enhanced g-factor. The estimated g-factor enhancement is 17.5 times that of the bare value. It is considered that a low electron density and high mobility makes it possible to reach a strong many-body interaction regime in which this type of strong enhancement in g-factor can be observed.



rate research

Read More

The strength of the Zeeman splitting induced by an applied magnetic field is an important factor for the realization of spin-resolved transport in mesoscopic devices. We measure the Zeeman splitting for a quantum point contact etched into a Ga0.25In0.75As quantum well, with the field oriented parallel to the transport direction. We observe an enhancement of the Lande g-factor from |g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first subband, six times larger than in GaAs. We report subband spacings in excess of 10 meV, which facilitates quantum transport at higher temperatures.
The conductance quantization and shot noise below the first conductance plateau $G_0 = 2e^2/h$ are measured in a quantum point contact fabricated in a GaAs/AlGaAs tunnel-coupled double quantum well. From the conductance measurement, we observe a clear quantized conductance plateau at $0.5G_0$ and a small minimum in the transconductance at $0.7 G_0$. Spectroscopic transconductance measurement reveals three maxima inside the first diamond, thus suggesting three minima in the dispersion relation for electric subbands. Shot noise measurement shows that the Fano factor behavior is consistent with this observation. We propose a model that relates these features to a wavenumber directional split subband due to a strong Rashba spin--orbit interaction that is induced by the center barrier potential gradient of the double-layer sample.
We present a study on the lifting of degeneracy of the size-quantized energy levels in an electrostatically defined quantum point contact in bilayer graphene by the application of in-plane magnetic fields. We observe a Zeeman spin splitting of the first three subbands, characterized by effective Land{e} $g$-factors that are enhanced by confinement and interactions. In the gate-voltage dependence of the conductance, a shoulder-like feature below the lowest subband appears, which we identify as a $0.7$ anomaly stemming from the interaction-induced lifting of the band degeneracy. We employ a phenomenological model of the $0.7$ anomaly to the gate-defined channel in bilayer graphene subject to in-plane magnetic field. Based on the qualitative theoretical predictions for the conductance evolution with increasing magnetic field, we conclude that the assumption of an effective spontaneous spin splitting is capable of describing our observations, while the valley degree of freedom remains degenerate.
Low-temperature electrical conductance spectroscopy measurements of quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are used to study the Zeeman splitting of 1D subbands for both in-plane and out-of-plane magnetic field orientations. The resulting in-plane g-factors agree qualitatively with those of previous experiments on quantum wires while the quantitative differences can be understood in terms of the enhanced quasi-1D confinement anisotropy. The influence of confinement potential on the anisotropy is discussed and an estimate for the out-of-plane g-factor is obtained which, in contrast to previous experiments, is closer to the theoretical prediction.
129 - R. Kraft , I.V. Krainov , V. Gall 2018
We report a study of one-dimensional subband splitting in a bilayer graphene quantum point contact in which quantized conductance in steps of $4,e^2/h$ is clearly defined down to the lowest subband. While our source-drain bias spectroscopy measurements reveal an unconventional confinement, we observe a full lifting of the valley degeneracy at high magnetic fields perpendicular to the bilayer graphene plane for the first two lowest subbands where confinement and Coulomb interactions are the strongest and a peculiar merging/mixing of $K$ and $K$ valleys from two non-adjacent subbands with indices $(N,N+2)$ which are well described by our semi-phenomenological model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا