No Arabic abstract
Many simplicial complexes arising in practice have an associated metric space structure on the vertex set but not on the complex, e.g. the Vietoris-Rips complex in applied topology. We formalize a remedy by introducing a category of simplicial metric thickenings whose objects have a natural realization as metric spaces. The properties of this category allow us to prove that, for a large class of thickenings including Vietoris-Rips and Cech thickenings, the product of metric thickenings is homotopy equivalent to the metric thickenings of product spaces, and similarly for wedge sums.
Thickenings of a metric space capture local geometric properties of the space. Here we exhibit applications of lower bounding the topology of thickenings of the circle and more generally the sphere. We explain interconnections with the geometry of circle actions on Euclidean space, the structure of zeros of trigonometric polynomials, and theorems of Borsuk-Ulam type. We use the combinatorial and geometric structure of the convex hull of orbits of circle actions on Euclidean space to give geometric proofs of the homotopy type of metric thickenings of the circle. Homotopical connectivity bounds of thickenings of the sphere allow us to prove that a weighted average of function values of odd maps $S^n to mathbb{R}^{n+2}$ on a small diameter set is zero. We prove an additional generalization of the Borsuk-Ulam theorem for odd maps $S^{2n-1} to mathbb{R}^{2kn+2n-1}$. We prove such results for odd maps from the circle to any Euclidean space with optimal quantitative bounds. This in turn implies that any raked homogeneous trigonometric polynomial has a zero on a subset of the circle of a specific diameter; these results are optimal.
We study track categories (i.e., groupoid-enriched categories) endowed with additive structure similar to that of a 1-truncated DG-category, except that composition is not assumed right linear. We show that if such a track category is right linear up to suitably coherent correction tracks, then it is weakly equivalent to a 1-truncated DG-category. This generalizes work of the first author on the strictification of secondary cohomology operations. As an application, we show that the secondary integral Steenrod algebra is strictifiable.
In this short note we prove that two definitions of (co)ends in $infty$-categories, via twisted arrow $infty$-categories and via $infty$-categories of simplices, are equivalent. We also show that weighted (co)limits, which can be defined as certain (co)ends, can alternatively be described as (co)limits over left and right fibrations, respectively.
We develop a localisation theory for certain categories, yielding a 3-arrow calculus: Every morphism in the localisation is represented by a diagram of length 3, and two such diagrams represent the same morphism if and only if they can be embedded in a 3-by-3 diagram in an appropriate way. The methods to construct this localisation are similar to the Ore localisation for a 2-arrow calculus; in particular, we do not have to use zigzags of arbitrary length. Applications include the localisation of an arbitrary model category with respect to its weak equivalences as well as the localisation of its full subcategories of cofibrant, fibrant and bifibrant objects, giving the homotopy category in all four cases. In contrast to the approach of Dwyer, Hirschhorn, Kan and Smith, the model category under consideration does not need to admit functorial factorisations. Moreover, our method shows that the derived category of any abelian (or idempotent splitting exact) category admits a 3-arrow calculus if we localise the category of complexes instead of its homotopy category.
We use the basic expected properties of the Gray tensor product of $(infty,2)$-categories to study (co)lax natural transformations. Using results of Riehl-Verity and Zaganidis we identify lax transformations between adjunctions and monads with commutative squares of (monadic) right adjoints. We also identify the colax transformations whose components are equivalences (generalizing the icons of Lack) with the 2-morphisms that arise from viewing $(infty,2)$-categories as simplicial $infty$-categories. Using this characterization we identify the $infty$-category of monads on a fixed object and colax morphisms between them with the $infty$-category of associative algebras in endomorphisms.