Do you want to publish a course? Click here

Exploring the diversity of double detonation explosions for type Ia supernovae: Effects of the post-explosion helium shell composition

134   0   0.0 ( 0 )
 Added by Mark Magee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The detonation of a helium shell on top of a carbon-oxygen white dwarf has been argued as a potential explosion mechanism for type Ia supernovae (SNe~Ia). The ash produced during helium shell burning can lead to light curves and spectra that are inconsistent with normal SNe~Ia, but may be viable for some objects showing a light curve bump within the days following explosion. We present a series of radiative transfer models designed to mimic predictions from double detonation explosion models. We consider a range of core and shell masses, and systematically explore multiple post-explosion compositions for the helium shell. We find that a variety of luminosities and timescales for early light curve bumps result from those models with shells containing $^{56}$Ni, $^{52}$Fe, or $^{48}$Cr. Comparing our models to SNe~Ia with light curve bumps, we find that these models can reproduce the shapes of almost all of the bumps observed, but only those objects with red colours around maximum light ($B-V gtrsim 1$) are well matched throughout their evolution. Consistent with previous works, we also show that those models in which the shell does not contain iron-group elements provide good agreement with normal SNe~Ia of different luminosities from shortly after explosion up to maximum light. While our models do not amount to positive evidence in favour of the double detonation scenario, we show that provided the helium shell ash does not contain iron-group elements, it may be viable for a wide range of normal SNe~Ia.



rate research

Read More

The double-detonation explosion model has been considered a candidate for explaining astrophysical transients with a wide range of luminosities. In this model, a carbon-oxygen white dwarf star explodes following detonation of a surface layer of helium. One potential signature of this explosion mechanism is the presence of unburned helium in the outer ejecta, left over from the surface helium layer. In this paper we present simple approximations to estimate the optical depths of important He I lines in the ejecta of double-detonation models. We use these approximations to compute synthetic spectra, including the He I lines, for double-detonation models obtained from hydrodynamical explosion simulations. Specifically, we focus on photospheric-phase predictions for the near-infrared 10830 AA~and 2 $mu$m lines of He I. We first consider a double detonation model with a luminosity corresponding roughly to normal SNe Ia. This model has a post-explosion unburned He mass of 0.03 $M_{odot}$ and our calculations suggest that the 2 $mu$m feature is expected to be very weak but that the 10830 AA~feature may have modest opacity in the outer ejecta. Consequently, we suggest that a moderate-to-weak He I 10830 AA~feature may be expected to form in double-detonation explosions at epochs around maximum light. However, the high velocities of unburned helium predicted by the model ($sim 19,000$~km~s$^{-1}$) mean that the He I 10830 AA~feature may be confused or blended with the C I 10690~AA~line forming at lower velocities. We also present calculations for the He I 10830 AA~and 2 $mu$m lines for a lower mass (low luminosity) double detonation model, which has a post-explosion He mass of 0.077 $M_{odot}$. In this case, both the He I features we consider are strong and can provide a clear observational signature of the double-detonation mechanism.
We study a sample of 16 Type Ia supernovae (SNe Ia) having both spectroscopic and photometric observations within 2 $-$ 3 days after the first light. The early $B-V$ colors of such a sample tends to show a continuous distribution. For objects with normal ejecta velocity (NV), the C~II $lambda$6580 feature is always visible in the early spectra while it is absent or very weak in the high-velocity (HV) counterpart. Moreover, the velocities of the detached high-velocity features (HVFs) of Ca~II NIR triplet (CaIR3) above the photosphere are found to be much higher in HV objects than in NV objects, with typical values exceeding 30,000 km~s$^{-1}$ at 2 $-$ 3 days. We further analyze the relation between %velocities of Si~II~$lambda$6355 at maximum, $v_{rm Si,max}$, the velocity shift of late-time [Fe~II] lines ($v_{rm [Fe~II]}$) and host galaxy mass. We find that all HV objects have redshifted $v_{rm [Fe~II]}$ while NV objects have both blue- and redshifted $v_{rm [Fe~II]}$. It is interesting to point out that the objects with redshifted $v_{rm [Fe~II]}$ are all located in massive galaxies, implying that HV and a portion of NV objects may have similar progenitor metallicities and explosion mechanisms. We propose that, with a geometric/projected effect, the He-detonation model may account for the similarity in birthplace environment and the differences seen in some SNe Ia, including $B-V$ colors, C~II feature, CaIR3 HVFs at early time and $v_{rm [Fe~II]}$ in the nebular phase. Nevertheless, some features predicted by He-detonation simulation, such as the rapidly decreasing light curve, deviate from the observations, and some NV objects with blueshifted nebular $v_{rm [Fe~II]}$ may involve other explosion mechanisms.
76 - M. Bulla , S. A. Sim , M. Kromer 2016
Calculations of synthetic spectropolarimetry are one means to test multi-dimensional explosion models for Type Ia supernovae. In a recent paper, we demonstrated that the violent merger of a 1.1 and 0.9 M$_{odot}$ white dwarf binary system is too asymmetric to explain the low polarization levels commonly observed in normal Type Ia supernovae. Here, we present polarization simulations for two alternative scenarios: the sub-Chandrasekhar mass double-detonation and the Chandrasekhar mass delayed-detonation model. Specifically, we study a two-dimensional double-detonation model and a three-dimensional delayed-detonation model, and calculate polarization spectra for multiple observer orientations in both cases. We find modest polarization levels ($<$ 1 per cent) for both explosion models. Polarization in the continuum peaks at $sim$ 0.1$-$0.3 per cent and decreases after maximum light, in excellent agreement with spectropolarimetric data of normal Type Ia supernovae. Higher degrees of polarization are found across individual spectral lines. In particular, the synthetic Si ii {lambda}6355 profiles are polarized at levels that match remarkably well the values observed in normal Type Ia supernovae, while the low degrees of polarization predicted across the O i {lambda}7774 region are consistent with the non-detection of this feature in current data. We conclude that our models can reproduce many of the characteristics of both flux and polarization spectra for well-studied Type Ia supernovae, such as SN 2001el and SN 2012fr. However, the two models considered here cannot account for the unusually high level of polarization observed in extreme cases such as SN 2004dt.
The velocities and equivalent widths (EWs) of a set of absorption features are measured for a sample of 28 well-observed Type Ia supernovae (SN Ia) covering a wide range of properties. The values of these quantities at maximum are obtained through interpolation/extrapolation and plotted against the decline rate, and so are various line ratios. The SNe are divided according to their velocity evolution into three classes defined in a previous work of Benetti et al.: low velocity gradient (LVG), high velocity gradient (HVG) and FAINT. It is found that all the LVG SNe have approximately uniform velocities at B maximum, while the FAINT SNe have values that decrease with increasing Delta m_15(B), and the HVG SNe have a large spread. The EWs of the Fe-dominated features are approximately constant in all SNe, while those of Intermediate mass element (IME) lines have larger values for intermediate decliners and smaller values for brighter and FAINT SNe. The HVG SNe have stronger Si II 6355-A lines, with no correlation with Delta m_15(B). It is also shown that the Si II 5972 A EW and three EW ratios, including one analogous to the R(Si II) ratio introduced by Nugent et al., are good spectroscopic indicators of luminosity. The data suggest that all LVG SNe have approximately constant kinetic energy, since burning to IME extends to similar velocities. The FAINT SNe may have somewhat lower energies. The large velocities and EWs of the IME lines of HVG SNe appear correlated with each other, but are not correlated with the presence of high-velocity features in the Ca II infrared triplet in the earliest spectra for the SNe for which such data exist.
During the early evolution of an AM CVn system, helium is accreted onto the surface of a white dwarf under conditions suitable for unstable thermonuclear ignition. The turbulent motions induced by the convective burning phase in the He envelope become strong enough to influence the propagation of burning fronts and may result in the onset of a detonation. Such an outcome would yield radioactive isotopes and a faint rapidly rising thermonuclear .Ia supernova. In this paper, we present hydrodynamic explosion models and observable outcomes of these He shell detonations for a range of initial core and envelope masses. The peak UVOIR bolometric luminosities range by a factor of 10 (from 5e41 - 5e42 erg/s), and the R-band peak varies from M_R,peak = -15 to -18. The rise times in all bands are very rapid (<10 d), but the decline rate is slower in the red than the blue due to a secondary near-IR brightening. The nucleosynthesis primarily yields heavy alpha-chain elements (40Ca through 56Ni) and unburnt He. Thus, the spectra around peak light lack signs of intermediate mass elements and are dominated by CaII and TiII features, with the caveat that our radiative transfer code does not include the non-thermal effects necessary to produce He features.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا