Do you want to publish a course? Click here

Oscillations of sterile neutrinos from dark matter decay eliminates the IceCube-Fermi tension

76   0   0.0 ( 0 )
 Added by Danny Marfatia
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

IceCube has observed a flux of cosmic neutrinos, with a bump in the energy range $10 lesssim E/{rm TeV} lesssim 100$ that creates a $3sigma$ tension with gamma-ray data from the Fermi satellite. This has been interpreted as evidence for a population of hidden cosmic-ray accelerators. We propose an alternative explanation of this conundrum on the basis of cold dark matter which decays into sterile neutrinos that after oscillations produce the bump in the cosmic neutrino spectrum.

rate research

Read More

We present the first IceCube search for a signal of dark matter annihilations in the Milky Way using all-flavour neutrino-induced particle cascades. The analysis focuses on the DeepCore sub-detector of IceCube, and uses the surrounding IceCube strings as a veto region in order to select starting events in the DeepCore volume. We use 329 live-days of data from IceCube operating in its 86-string configuration during 2011-2012. No neutrino excess is found, the final result being compatible with the background-only hypothesis. From this null result, we derive upper limits on the velocity-averaged self-annihilation cross-section, < sigma_A v >, for dark matter candidate masses ranging from 30 GeV up to 10 TeV, assuming both a cuspy and a flat-cored dark matter halo profile. For dark matter masses between 200 GeV and 10 TeV, the results improve on all previous IceCube results on < sigma_A v >, reaching a level of 10^{-23} cm^3 s^-1, depending on the annihilation channel assumed, for a cusped NFW profile. The analysis demonstrates that all-flavour searches are competitive with muon channel searches despite the intrinsically worse angular resolution of cascades compared to muon tracks in IceCube.
With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses six years of IceCube data focusing on muon neutrino track events from the Northern Hemisphere, while the second analysis uses two years of cascade events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: We obtain the strongest constraint to date, excluding lifetimes shorter than $10^{28},$s at $90%$ CL for dark matter masses above $10,$TeV.
A full energy and flavor-dependent analysis of the three-year high-energy IceCube neutrino events is presented. By means of multidimensional fits, we derive the current preferred values of the high-energy neutrino flavor ratios, the normalization and spectral index of the astrophysical fluxes, and the expected atmospheric background events, including a prompt component. A crucial assumption resides on the choice of the energy interval used for the analyses, which significantly biases the results. When restricting ourselves to the ~30 TeV - 3 PeV energy range, which contains all the observed IceCube events, we find that the inclusion of the spectral information improves the fit to the canonical flavor composition at Earth, (1:1:1), with respect to a single-energy bin analysis. Increasing both the minimum and the maximum deposited energies has dramatic effects on the reconstructed flavor ratios as well as on the spectral index. Imposing a higher threshold of 60 TeV yields a slightly harder spectrum by allowing a larger muon neutrino component, since above this energy most atmospheric tracklike events are effectively removed. Extending the high-energy cutoff to fully cover the Glashow resonance region leads to a softer spectrum and a preference for tau neutrino dominance, as none of the expected electron antineutrino induced showers have been observed so far. The lack of showers at energies above 2 PeV may point to a broken power-law neutrino spectrum. Future data may confirm or falsify whether or not the recently discovered high-energy neutrino fluxes and the long-standing detected cosmic rays have a common origin.
The direct detection of particle dark matter through its scattering with nucleons is of fundamental importance to understand the nature of DM. In this work, we propose that the high-energy neutrino detectors like IceCube can be used to uniquely probe the DM-nucleon cross-section for high-energy DM of $sim$ PeV, up-scattered by the high-energy cosmic rays. We derive for the first time strong constraints on the DM-nucleon cross-section down to $sim 10^{-32}$ cm$^2$ at this energy scale for sub-GeV DM candidates. Such independent probe at energy scale far exceeding other existing direct detection experiments can therefore provide useful insights complementary to other searches.
We present an in-depth analysis of the flavour and spectral composition of the 36 high-energy neutrino events observed after three years of observation by the IceCube neutrino telescope. While known astrophysical sources of HE neutrinos are expected to produce a nearly $(1:1:1)$ flavour ratio (electron : muon : tau) of neutrinos at earth, we show that the best fits based on the events detected above $E_ u ge 28$ TeV do not necessarily support this hypothesis. Crucially, the energy range that is considered when analysing the HE neutrino data can have a profound impact on the conclusions. We highlight two intriguing puzzles: an apparent deficit of muon neutrinos, seen via a deficit of track-like events; and an absence of $bar u_e$s at high energy, seen as an absence of events near the Glashow resonance. We discuss possible explanations, including the misidentification of tracks as showers, and a broken power law, in analogy to the observed HE cosmic ray spectrum.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا