Do you want to publish a course? Click here

Efficient Importance Sampling for Large Sums of Independent and Identically Distributed Random Variables

243   0   0.0 ( 0 )
 Added by Nadhir Ben Rached
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We aim to estimate the probability that the sum of nonnegative independent and identically distributed random variables falls below a given threshold, i.e., $mathbb{P}(sum_{i=1}^{N}{X_i} leq gamma)$, via importance sampling (IS). We are particularly interested in the rare event regime when $N$ is large and/or $gamma$ is small. The exponential twisting is a popular technique that, in most of the cases, compares favorably to existing estimators. However, it has several limitations: i) it assumes the knowledge of the moment generating function of $X_i$ and ii) sampling under the new measure is not straightforward and might be expensive. The aim of this work is to propose an alternative change of measure that yields, in the rare event regime corresponding to large $N$ and/or small $gamma$, at least the same performance as the exponential twisting technique and, at the same time, does not introduce serious limitations. For distributions whose probability density functions (PDFs) are $mathcal{O}(x^{d})$, as $x rightarrow 0$ and $d>-1$, we prove that the Gamma IS PDF with appropriately chosen parameters retrieves asymptotically, in the rare event regime, the same performance of the estimator based on the use of the exponential twisting technique. Moreover, in the Log-normal setting, where the PDF at zero vanishes faster than any polynomial, we numerically show that a Gamma IS PDF with optimized parameters clearly outperforms the exponential twisting change of measure. Numerical experiments validate the efficiency of the proposed estimator in delivering a highly accurate estimate in the regime of large $N$ and/or small $gamma$.



rate research

Read More

The distribution of sum of independent non-identical binomial random variables is frequently encountered in areas such as genomics, healthcare, and operations research. Analytical solutions to the density and distribution are usually cumbersome to find and difficult to compute. Several methods have been developed to approximate the distribution, and among these is the saddlepoint approximation. However, implementation of the saddlepoint approximation is non-trivial and, to our knowledge, an R package is still lacking. In this paper, we implemented the saddlepoint approximation in the textbf{sinib} package. We provide two examples to illustrate its usage. One example uses simulated data while the other uses real-world healthcare data. The textbf{sinib} package addresses the gap between the theory and the implementation of approximating the sum of independent non-identical binomials.
We consider Particle Gibbs (PG) as a tool for Bayesian analysis of non-linear non-Gaussian state-space models. PG is a Monte Carlo (MC) approximation of the standard Gibbs procedure which uses sequential MC (SMC) importance sampling inside the Gibbs procedure to update the latent and potentially high-dimensional state trajectories. We propose to combine PG with a generic and easily implementable SMC approach known as Particle Efficient Importance Sampling (PEIS). By using SMC importance sampling densities which are approximately fully globally adapted to the targeted density of the states, PEIS can substantially improve the mixing and the efficiency of the PG draws from the posterior of the states and the parameters relative to existing PG implementations. The efficiency gains achieved by PEIS are illustrated in PG applications to a univariate stochastic volatility model for asset returns, a non-Gaussian nonlinear local-level model for interest rates, and a multivariate stochastic volatility model for the realized covariance matrix of asset returns.
Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.
The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of the deterministic multiple mixture estimator of Owen and Zhou (2000). Although the convergence properties of the algorithm cannot be fully investigated, we demonstrate through a challenging banana shape target distribution and a population genetics example that the improvement brought by this technique is substantial.
237 - L. Martino , V. Elvira , D. Luengo 2015
Monte Carlo methods represent the de facto standard for approximating complicated integrals involving multidimensional target distributions. In order to generate random realizations from the target distribution, Monte Carlo techniques use simpler proposal probability densities to draw candidate samples. The performance of any such method is strictly related to the specification of the proposal distribution, such that unfortunate choices easily wreak havoc on the resulting estimators. In this work, we introduce a layered (i.e., hierarchical) procedure to generate samples employed within a Monte Carlo scheme. This approach ensures that an appropriate equivalent proposal density is always obtained automatically (thus eliminating the risk of a catastrophic performance), although at the expense of a moderate increase in the complexity. Furthermore, we provide a general unified importance sampling (IS) framework, where multiple proposal densities are employed and several IS schemes are introduced by applying the so-called deterministic mixture approach. Finally, given these schemes, we also propose a novel class of adaptive importance samplers using a population of proposals, where the adaptation is driven by independent parallel or interacting Markov Chain Monte Carlo (MCMC) chains. The resulting algorithms efficiently combine the benefits of both IS and MCMC methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا