Do you want to publish a course? Click here

Influence of radiative pumping on the HD rotational level populations in diffuse molecular clouds of the interstellar medium

73   0   0.0 ( 0 )
 Added by Viacheslav Klimenko
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a theoretical calculation of the influence of ultraviolet radiative pumping on the excitation of the rotational levels of the ground vibrational state for HD molecules under conditions of the cold diffuse interstellar medium (ISM). Two main excitation mechanisms have been taken into account in our analysis: (i) collisions with atoms and molecules and (ii) radiative pumping by the interstellar ultraviolet (UV) radiation field. The calculation of the radiative pumping rate coefficients $Gamma_{rm ij}$ corresponding to Dranes model of the field of interstellar UV radiation, taking into account the self-shielding of HD molecules, is performed. We found that the population of the first HD rotational level ($J = 1$) is determined mainly by radiative pumping rather than by collisions if the thermal gas pressure $p_{rm th}le10^4left(frac{I_{rm{UV}}}{1}right),mbox{K,cm}^{-3}$ and the column density of HD is lower than $log N({rm{HD}})<15$. Under this constraint the populations of rotational levels of HD turns out to be as well a more sensitive indicator of the UV radiation intensity than the fine-structure levels of atomic carbon. We suggest that taking into account radiative pumping of HD rotational levels may be important for the problem of the cooling of primordial gas at high redshift: ultraviolet radiation from first stars can increase the rate of HD cooling of the primordial gas in the early Universe.



rate research

Read More

124 - Haoyu Fan 2017
We study the behavior of eight diffuse interstellar bands (DIBs) in different interstellar environments, as characterized by the fraction of hydrogen in molecular form [$f$(H$_2$)], with comparisons to the corresponding behavior of various known atomic and molecular species. The equivalent widths of the five normal DIBs ($lambdalambda$5780.5, 5797.1, 6196.0, 6283.8, and 6613.6), normalized to $E(B-V)$, show a Lambda-shaped behavior: they increase at low $f$(H$_2$), peak at $f$(H$_2$) ~ 0.3, and then decrease. The similarly normalized column densities of Ca, Ca$^+$, Ti$^+$, and CH$^+$ also decline for $f$(H$_2$) > 0.3. In contrast, the normalized column densities of Na, K, CH, CN, and CO increase monotonically with $f$(H$_2$), and the trends exhibited by the three C$_2$ DIBs ($lambdalambda$4726.8, 4963.9, and 4984.8) lie between those two general behaviors. These trends with $f$(H$_2$) are accompanied by cosmic scatter, the dispersion at any given $f$(H$_2$) being significantly larger than the individual errors of measurement. The Lambda-shaped trends suggest the balance between creation and destruction of the DIB carriers differs dramatically between diffuse atomic and diffuse molecular clouds; additional processes besides ionization and shielding are needed to explain those observed trends. Except for several special cases, the highest $W$(5780)/$W$(5797) ratios, characterizing the so-called sigma-zeta effect, occur only at $f$(H$_2$) < 0.2. We propose a sequence of DIBs based on trends in their pair-wise strength ratios with increasing $f$(H$_2$). In order of increasing environmental density, we find the $lambda$6283.8 and $lambda$5780.5 DIBs, the $lambda$6196.0 DIB, the $lambda$6613.6 DIB, the $lambda$5797.1 DIB, and the C$_2$ DIBs.
403 - David A. Neufeld 2016
We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation field, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.
We investigate one mechanism of the change in the isotopic composition of cosmologically distant clouds of interstellar gas whose matter was subjected only slightly to star formation processes. According to the standard cosmological model, the isotopic composition of the gas in such clouds was formed at the epoch of Big Bang nucleosynthesis and is determined only by the baryon density in the Universe. The dispersion in the available cloud composition observations exceeds the errors of individual measurements. This may indicate that there are mechanisms of the change in the composition of matter in the Universe after the completion of Big Bang nucleosynthesis. We have calculated the destruction and production rates of light isotopes (D, 3He, 4He) under the influence of photonuclear reactions triggered by the gamma-ray emission from active galactic nuclei (AGNs). We investigate the destruction and production of light elements depending on the spectral characteristics of the gamma-ray emission. We show that in comparison with previous works, taking into account the influence of spectral hardness on the photonuclear reaction rates can increase the characteristic radii of influence of the gamma-ray emission from AGNs by a factor of 2-8. The high gamma-ray luminosities of AGNs observed in recent years increase the previous estimates of the characteristic radii by two orders of magnitude. This may suggest that the influence of the emission from AGNs on the change in the composition of the medium in the immediate neighborhood (the host galaxy) has been underestimated.
202 - Adam M. Ritchey 2014
We present a comprehensive analysis of interstellar absorption lines seen in moderately-high resolution, high signal-to-noise ratio optical spectra of SN 2014J in M82. Our observations were acquired over the course of six nights, covering the period from ~6 days before to ~30 days after the supernova reached its maximum B-band brightness. We examine complex absorption from Na I, Ca II, K I, Ca I, CH+, CH, and CN, arising primarily from diffuse gas in the interstellar medium (ISM) of M82. We detect Li I absorption over a range in velocity consistent with that exhibited by the strongest Na I and K I components associated with M82; this is the first detection of interstellar Li in a galaxy outside of the Local Group. There are no significant temporal variations in the absorption-line profiles over the 37 days sampled by our observations. The relative abundances of the various interstellar species detected reveal that the ISM of M82 probed by SN 2014J consists of a mixture of diffuse atomic and molecular clouds characterized by a wide range of physical/environmental conditions. Decreasing N(Na I)/N(Ca II) ratios and increasing N(Ca I)/N(K I) ratios with increasing velocity are indicative of reduced depletion in the higher-velocity material. Significant component-to-component scatter in the N(Na I)/N(Ca II) and N(Ca I)/N(Ca II) ratios may be due to variations in the local ionization conditions. An apparent anti-correlation between the N(CH+)/N(CH) and N(Ca I)/N(Ca II) ratios can be understood in terms of an opposite dependence on gas density and radiation field strength, while the overall high CH+ abundance may be indicative of enhanced turbulence in the ISM of M82. The Li abundance also seems to be enhanced in M82, which supports the conclusions of recent gamma-ray emission studies that the cosmic-ray acceleration processes are greatly enhanced in this starburst galaxy.
We present a systematic study of deuterated molecular hydrogen (HD) at high redshift, detected in absorption in the spectra of quasars. We present four new identifications of HD lines associated with known $rm H_2$-bearing Damped Lyman-$alpha$ systems. In addition, we measure upper limits on the $rm HD$ column density in twelve recently identified $rm H_2$-bearing DLAs. We find that the new $rm HD$ detections have similar $N({rm HD})/N(rm H_2)$ ratios as previously found, further strengthening a marked difference with measurements through the Galaxy. This is likely due to differences in physical conditions and metallicity between the local and the high-redshift interstellar media. Using the measured $N({rm HD})/N({rm H_2})$ ratios together with priors on the UV flux ($chi$) and number densities ($n$), obtained from analysis of $rm H_2$ and associated CI lines, we are able to constrain the cosmic-ray ionization rate (CRIR, $zeta$) for the new $rm HD$ detections and for eight known HD-bearing systems where priors on $n$ and $chi$ are available. We find significant dispersion in $zeta$, from a few $times 10^{-18}$ s$^{-1}$ to a few $times 10^{-15}$ s$^{-1}$. We also find that $zeta$ strongly correlates with $chi$ -- showing almost quadratic dependence, slightly correlates with $Z$, and does not correlate with $n$, which probably reflects a physical connection between cosmic rays and star-forming regions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا