Do you want to publish a course? Click here

Influence of Gamma-Ray Emission on the Isotopic Composition of Clouds in the Interstellar Medium

154   0   0.0 ( 0 )
 Added by Alexandre Ivanchik
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate one mechanism of the change in the isotopic composition of cosmologically distant clouds of interstellar gas whose matter was subjected only slightly to star formation processes. According to the standard cosmological model, the isotopic composition of the gas in such clouds was formed at the epoch of Big Bang nucleosynthesis and is determined only by the baryon density in the Universe. The dispersion in the available cloud composition observations exceeds the errors of individual measurements. This may indicate that there are mechanisms of the change in the composition of matter in the Universe after the completion of Big Bang nucleosynthesis. We have calculated the destruction and production rates of light isotopes (D, 3He, 4He) under the influence of photonuclear reactions triggered by the gamma-ray emission from active galactic nuclei (AGNs). We investigate the destruction and production of light elements depending on the spectral characteristics of the gamma-ray emission. We show that in comparison with previous works, taking into account the influence of spectral hardness on the photonuclear reaction rates can increase the characteristic radii of influence of the gamma-ray emission from AGNs by a factor of 2-8. The high gamma-ray luminosities of AGNs observed in recent years increase the previous estimates of the characteristic radii by two orders of magnitude. This may suggest that the influence of the emission from AGNs on the change in the composition of the medium in the immediate neighborhood (the host galaxy) has been underestimated.



rate research

Read More

The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. Analysis of the well-known 9.7{mu}m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modelled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modelling the optical depth along lines of sight toward the extinguished objects Cyg OB2 No. 12 and {zeta} Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as polivene. Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.
We present a theoretical calculation of the influence of ultraviolet radiative pumping on the excitation of the rotational levels of the ground vibrational state for HD molecules under conditions of the cold diffuse interstellar medium (ISM). Two main excitation mechanisms have been taken into account in our analysis: (i) collisions with atoms and molecules and (ii) radiative pumping by the interstellar ultraviolet (UV) radiation field. The calculation of the radiative pumping rate coefficients $Gamma_{rm ij}$ corresponding to Dranes model of the field of interstellar UV radiation, taking into account the self-shielding of HD molecules, is performed. We found that the population of the first HD rotational level ($J = 1$) is determined mainly by radiative pumping rather than by collisions if the thermal gas pressure $p_{rm th}le10^4left(frac{I_{rm{UV}}}{1}right),mbox{K,cm}^{-3}$ and the column density of HD is lower than $log N({rm{HD}})<15$. Under this constraint the populations of rotational levels of HD turns out to be as well a more sensitive indicator of the UV radiation intensity than the fine-structure levels of atomic carbon. We suggest that taking into account radiative pumping of HD rotational levels may be important for the problem of the cooling of primordial gas at high redshift: ultraviolet radiation from first stars can increase the rate of HD cooling of the primordial gas in the early Universe.
223 - Yang Chen 2018
Diffuse soft X-ray line emission is commonly used to trace the thermal and chemical properties of the hot interstellar medium, as well as its content, in nearby galaxies. Although resonant line scattering complicates the interpretation of the emission, it also offers an opportunity to measure the kinematics of the medium. We have implemented a direct Monte Carlo simulation scheme that enables us to account for resonant scattering effect in the medium, in principle, with arbitrary spatial, thermal, chemical, and kinematic distributions. Here we apply this scheme via dimensionless calculation to an isothermal, chemically uniform, and spherically symmetric medium with a radial density distribution characterized by a $beta$-model. This application simultaneously account for both optical depth-dependent spatial distortion and intensity change of the resonant line emission due to the scattering, consistent with previous calculations. We further apply the modeling scheme to the OVII and OVIII emission line complex observed in the XMM-Newton RGS spectrum of the M31 bulge. This modeling, though with various limitations due to its simplicity, shows that the resonant scattering could indeed account for much of the spatial distortion of the emission, as well as the relative strengths of the lines, especially the large forbidden to resonant line ratio of the OVII He$alpha$ triplet. We estimate the isotropic turbulence Mach number of the medium in M31 as $sim0.17$ for the first time and the line-emitting gas temperature as $sim2.3times10^6$ K. We conclude that the resonant scattering may in general play an important role in shaping the soft X-ray spectra of diffuse hot gas in normal galaxies.
Short Gamma-Ray Bursts (SGRBs) are expected to form from the coalescence of compact binaries, either of primordial origin or from dynamical interactions in globular clusters. In this paper, we investigate the possibility that the offset and afterglow brightness of a SGRB can help revealing the origin of its progenitor binary. We find that a SGRB is likely to result from the primordial channel if it is observed within 10 kpc from the center of a massive galaxy and shows a detectable afterglow. The same conclusion holds if it is 100 kpc away from a small, isolated galaxy and shows a weak afterglow. On the other hand, a dynamical origin is suggested for those SGRBs with observable afterglow either at a large separation from a massive, isolated galaxy or with an offset of 10-100 kpc from a small, isolated galaxy. We discuss the possibility that SGRBs from the dynamical channel are hosted in intra-cluster globular clusters and find that GRB 061201 may fall within this scenario.
Elliptical galaxies contain X-ray emitting gas that is subject to continuous ram pressure stripping over timescales comparable to cluster ages. The gas in these galaxies is not in perfect hydrostatic equilibrium. Supernova feedback, stellar winds, or active galactic nuclei (AGN) feedback can significantly perturb the interstellar medium (ISM). Using hydrodynamical simulations, we investigate the effect of subsonic turbulence in the hot ISM on the ram pressure stripping process in early-type galaxies. We find that galaxies with more turbulent ISM produce longer, wider, and more smoothly distributed tails of the stripped ISM than those characterised by weaker ISM turbulence. Our main conclusion is that even very weak internal turbulence, at the level of <15% of the average ISM sound speed, can significantly accelerate the gas removal from galaxies via ram pressure stripping. The magnitude of this effect increases sharply with the strength of turbulence. As most of the gas stripping takes place near the boundary between the ISM and the intraclustermedium (ICM), the boost in the ISM stripping rate is due to the random walk of the ISM from the central regions of the galactic potential well to larger distances, where the ram pressure is able to permanently remove the gas from galaxies. The ICM can be temporarily trapped inside the galactic potential well due to the mixing of the turbulent ISM with the ICM. The galaxies with more turbulent ISM, yet still characterised by very weak turbulence, can hold larger amounts of the ICM. [Abridged]
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا