No Arabic abstract
We study the particular case in which Extended Geometric Deformation does consists of consecutive deformations of temporal and spatial components of the metric, in Schwarzschild-like and isotropic coordinates. In the latter, we present two inequivalent ways to perform this 2-steps GD. This was done in such a way that the method may be applied to different seed solutions. As an example, we use Tolman IV as seed solution, in order to obtain two inequivalent physical solutions with anisotropy in the pressures in Schwarzschild-like coordinates. In the isotropic sector, we obtained four different solutions with anisotropy in the pressures that satisfy physical acceptability conditions, using Gold III as seed solution.
The main objective of this work, is to show two inequivalent methods to obtain new spherical symmetric solutions of Einsteins Equations with anisotropy in the pressures in isotropic coordinates. This was done inspired by the MGD method, which is known to be valid for line elements in Schwarzschild coordinates. As example, we obtained four analytical solutions using Gold III as seed solution. Two solutions, out of four, (one for each algorithm), satisfy the physical acceptability conditions.
We present a new class of spherically symmetric spacetimes for matter distributions with anisotropic pressures in the presence of an electric field. The equation of state for the matter distribution is linear. A class of new exact solutions is found to the Einstein-Maxwell system of equations with an isotropic form of the line element. We achieve this by specifying particular forms for one of the gravitational potentials and the electric field intensity. We regain the masses of the stars PSR J1614-2230, Vela X-1, PSR J1903+327, 4U 1820-30 and SAX J1808.4-3658 for particular parameter values. A detailed physical analysis for the star PSR J1614-2230 indicates that the model is well behaved.
The method of minimal geometric deformation (MGD) is used to derive static, strongly gravitating, spherically symmetric, compact stellar distributions. The trace and Weyl anomalies are then employed to probe the MGD in the holographic setup, as a realistic model, playing a prominent role in AdS/CFT.
The parameter space for continuous gravitational waves (GWs) can be divided into amplitude parameters (signal amplitude, inclination and polarization angles describing the orientation of the source, and an initial phase) and phase-evolution parameters. The division is useful in part because the Jaranowski-Krolak-Schutz (JKS) coordinates on the four-dimensional amplitude parameter space allow the GW signal to be written as a linear combination of four template waveforms with the JKS coordinates as coefficients. We define a new set of coordinates on the amplitude parameter space, with the same properties, which is more closely connected to the physical amplitude parameters. These naturally divide into two pairs of Cartesian-like coordinates on two-dimensional subspaces, one corresponding to left- and the other to right-circular polarization. We thus refer to these as CPF (circular polarization factored) coordinates. The corresponding two sets of polar coordinates (known as CPF-polar) can be related in a simple way to the physical parameters. We illustrate some simplifying applications for these various coordinate systems, such as: a calculation of Jacobians between various coordinate systems; an illustration of the signal coordinate singularities associated with left- and right-circular polarization, which correspond to the origins of the two two-dimensional subspaces; and an elucidation of the form of the log-likelihood ratio between hypotheses of Gaussian noise with and without a continuous GW signal. These are used to illustrate some of the prospects for approximate evaluation of a Bayesian detection statistic defined by marginalization over the physical parameter space. Additionally, in the presence of simplifying assumptions about the observing geometry, we are able to explicitly evaluate the integral for the Bayesian detection statistic, and compare it to the approximate results.
Several aspects of scalar field dynamics on a brane which differs from corresponding regimes in the standard cosmology are investigated. We consider asymptotic solution near a singularity, condition for inflation and bounces and some detail of chaotic behavior in the brane model. Each results are compared with those known in the standard cosmology.