No Arabic abstract
We discuss classical electrodynamics and the Aharonov-Bohm effect in the presence of the minimal length. In the former we derive the classical equation of motion and the corresponding Lagrangian. In the latter we adopt the generalized uncertainty principle (GUP) and compute the scattering cross section up to the first-order of the GUP parameter $beta$. Even though the minimal length exists, the cross section is invariant under the simultaneous change $phi rightarrow -phi$, $alpha rightarrow -alpha$, where $phi$ and $alpha$ are azimuthal angle and magnetic flux parameter. However, unlike the usual Aharonv-Bohm scattering the cross section exhibits discontinuous behavior at every integer $alpha$. The symmetries, which the cross section has in the absence of GUP, are shown to be explicitly broken at the level of ${cal O} (beta)$.
The non-relativistic quantum mechanics with a generalized uncertainty principle (GUP) is examined in $D$-dimensional free particle and harmonic oscillator systems. The Feynman propagators for these systems are exactly derived within the first order of the GUP parameter.
The Generalized Uncertainty Principle (GUP) has been directly applied to the motion of (macroscopic) test bodies on a given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modified Hawking temperature to a deformation of the background metric. Such a deformed background metric determines new geodesic motions without violating the Equivalence Principle. We point out here that the two effects are mutually exclusive when compared with experimental bounds. Moreover, the former stems from modified Poisson brackets obtained from a wrong classical limit of the deformed canonical commutators.
We first give a way which satisfies the bidirectional derivation between the generalized uncertainty principle and the corrected entropy of black holes. By this way, the generalized uncertainty principle can be indirectly modified by some correction elements which are carrried by the corrected entropy. Then we put an entropy modified by quantum tunneling into the way, from which we get a new generalized uncertainty principle, and finally find the new one has a broader form and a stronger adaptability to the sign of parameter.
The Generalized Uncertainty Principle and the related minimum length are normally considered in non-relativistic Quantum Mechanics. Extending it to relativistic theories is important for having a Lorentz invariant minimum length and for testing the modified Heisenberg principle at high energies.In this paper, we formulate a relativistic Generalized Uncertainty Principle. We then use this to write the modified Klein-Gordon, Schrodinger and Dirac equations, and compute quantum gravity corrections to the relativistic hydrogen atom, particle in a box, and the linear harmonic oscillator.
Experimental study of quantum Hall corrals reveals Aharonov-Bohm-Like (ABL) oscillations. Unlike the Aharonov-Bohm effect which has a period of one flux quantum, $Phi_{0}$, the ABL oscillations possess a flux period of $Phi_{0}/f$, where $f$ is the integer number of fully filled Landau levels in the constrictions. Detection of the ABL oscillations is limited to the low magnetic field side of the $ u_{c}$ = 1, 2, 4, 6... integer quantum Hall plateaus. These oscillations can be understood within the Coulomb blockade model of quantum Hall interferometers as forward tunneling and backscattering, respectively, through the center island of the corral from the bulk and the edge states. The evidence for quantum interference is weak and circumstantial.