No Arabic abstract
Ghost-free bimetric gravity is an extension of general relativity, featuring a massive spin-2 field coupled to gravity. We parameterize the theory with a set of observables having specific physical interpretations. For the background cosmology and the static, spherically symmetric solutions (for example approximating the gravitational potential of the solar system), there are four directions in the parameter space in which general relativity is approached. Requiring that there is a working screening mechanism and a nonsingular evolution of the Universe, we place analytical constraints on the parameter space which rule out many of the models studied in the literature. Cosmological solutions where the accelerated expansion of the Universe is explained by the dynamical interaction of the massive spin-2 field rather than by a cosmological constant, are still viable.
Ghost-free bimetric gravity is a theory of two interacting spin-2 fields, one massless and one massive, in addition to the standard matter particles and fields, thereby generalizing Einsteins theory of general relativity. To parameterize the theory, we use five observables with specific physical interpretations. We present, for the first time, observational constraints on these parameters that: (i) apply to the full theory, (ii) are consistent with a working screening mechanism (i.e., restoring general relativity locally), (iii) exhibit a continuous, real-valued background cosmology (without the Higuchi ghost). For the cosmological constraints, we use data sets from the cosmic microwave background, baryon acoustic oscillations, and type Ia supernovae. Bimetric cosmology provides a good fit to data even for large values of the mixing angle between the massless and massive gravitons. Interestingly, the best-fit model is a self-accelerating solution where the accelerated expansion is due to the dynamical massive spin-2 field, without a cosmological constant. Due to the screening mechanism, the models are consistent with local tests of gravity such as solar system tests and gravitational lensing by galaxies. We also comment on the possibility of alleviating the Hubble tension with this theory.
Recently, Kenna-Allison et.al. claimed that bimetric gravity cannot give rise to a viable cosmological expansion history while at the same time being compatible with local gravity tests. In this note we review that claim and combine various results from the literature to provide several simple counter examples. We conclude that the results of Kenna-Allison et.al. cannot hold in general.
Unimodular gravity is an appealing approach to address the cosmological constant problem. In this scenario, the vacuum energy density of quantum fields does not gravitate and the cosmological constant appears merely as an integration constant. Recently, it has been shown that energy diffusion that may arise in quantum gravity and in theories with spontaneous collapse is compatible with this framework by virtue of its restricted diffeomorphism invariance. New studies suggest that this phenomenon could lead to higher-order equations in the context of homogeneous and isotropic Universe, affecting the well-posedness of their Cauchy initial-value problem. In this work, we show that this issue can be circumvented by assuming an equation of state that relates the energy density to the function that characterizes the diffusion. As an application, we solve the field equations analytically for an isotropic and homogeneous Universes in a barotropic model and in the mass-proportional continuous spontaneous localization (CSL) scenario, assuming that only dark matter develops energy diffusion. Different solutions possessing phase transition from decelerated to accelerated expansion are found. We use cosmological data of type Ia Supernovae and observational Hubble data to constrain the free parameters of both models. It is found that very small but nontrivial energy nonconservation is compatible with the barotropic model. However, for the CSL model, we find that the best-fit values are not compatible with previous laboratory experiments. We comment on this fact and propose future directions to explore energy diffusion in cosmology.
We use data from Supernovae (SNIa) Pantheon sample, from Baryonic Acoustic Oscillations (BAO), and from cosmic chronometers measurements of the Hubble parameter (CC), alongside arguments from Big Bang Nucleosynthesis (BBN), in order to extract constraints on Myrzakulov $F(R,T)$ gravity. This is a connection-based theory belonging to the Riemann-Cartan subclass, that uses a specific but non-special connection, which then leads to extra degrees of freedom. Our analysis shows that both considered models lead to $sim 1 sigma$ compatibility in all cases. For the involved dimensionless parameter we find that it is constrained to an interval around zero, however the corresponding contours are slightly shifted towards positive values. Furthermore, we use the obtained parameter chains so to reconstruct the corresponding Hubble function, as well as the dark-energy equation-of-state parameter, as a function of redshift. As we show, Model 1 is very close to $Lambda$CDM scenario, while Model 2 resembles it at low redshifts, however at earlier times deviations are allowed. Finally, applying the AIC, BIC and the combined DIC criteria, we deduce that both models present a very efficient fitting behavior, and are statistically equivalent with $Lambda$CDM cosmology, despite the fact that Model 2 does not contain the latter as a limit.
Bimetric gravity can reproduce the accelerated expansion of the Universe, without a cosmological constant. However, the stability of these solutions to linear perturbations has been questioned, suggesting exponential growth of structure in this approximation. We present a simple model of structure formation, for which an analytical solution is derived. The solution is well-behaved, showing that there is no physical instability with respect to these perturbations. The model can yield a growth of structure exhibiting measurable differences from $Lambda$CDM.