No Arabic abstract
By studying the set of correlations that are theoretically possible between physical systems without allowing for signalling of information backwards in time, we here identify correlations that can only be achieved if the time ordering between the systems is fundamentally indefinite. These correlations, if they exist in nature, must result from non-classical, non-deterministic time, and so may have relevance for quantum (or post-quantum) gravity, where a definite global time might not exist.
The fundamental dynamics of quantum particles is neutral with respect to the arrow of time. And yet, our experiments are not: we observe quantum systems evolving from the past to the future, but not the other way round. A fundamental question is whether it is in principle possible to probe a quantum dynamics in the backward direction, or in more general combinations of the forward and the backward direction. To answer this question, we characterise all possible time-reversals that satisfy four natural requirements and we identify the largest set of quantum processes that can in principle be probed in both time directions. Then, we show that quantum theory is compatible with the existence of a new kind of operations where the arrow of time is indefinite. We explicitly construct one such operation, called the quantum time flip, and show that it cannot be realised by any quantum circuit with a definite direction of time. The quantum time flip offers an advantage in a game where a referee challenges a player to identify a hidden relation between two gates, and can be experimentally simulated with photonic systems, shedding light on the information-processing capabilities of exotic scenarios in which the arrow of time is in a quantum superposition.
Treating the time of an event as a quantum variable, we derive a scheme in which superpositions in time are used to perform operations in an indefinite causal order. We use some aspects of a recently developed space-time-symmetric formalism of events. We propose a specific implementation of the scheme and recover the Quantum SWITCH, where quantum operations are performed in an order which is entangled with the state of a control qubit. Our scheme does not rely on any exotic quantum gravitational effect, but instead on phenomena which are naturally fuzzy in time, such as the decay of an excited atom.
Recently, the possible existence of quantum processes with indefinite causal order has been extensively discussed, in particular using the formalism of process matrices. Here we give a new perspective on this question, by establishing a direct connection to the theory of multi-time quantum states. Specifically, we show that process matrices are equivalent to a particular class of pre- and post- selected quantum states. This offers a new conceptual point of view to the nature of process matrices. Our results also provide an explicit recipe to experimentally implement any process matrix in a probabilistic way, and allow us to generalize some of the previously known properties of process matrices. Furthermore we raise the issue of the difference between the notions of indefinite temporal order and indefinite causal order, and show that one can have indefinite causal order even with definite temporal order.
Investigating the role of causal order in quantum mechanics has recently revealed that the causal distribution of events may not be a-priori well-defined in quantum theory. While this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. Here we report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our set-up is with a definite causal order by measuring a causal witness. This mathematical object incorporates a series of measurements which are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment we perform a measurement in a superposition of causal orders - without destroying the coherence - to acquire information both inside and outside of a causally non-ordered process. Using this information, we experimentally determine a causal witness, demonstrating by almost seven standard deviations that the experimentally implemented process does not have a definite causal order.
Realization of indefinite causal order (ICO), a theoretical possibility that even causal relations between physical events can be subjected to quantum superposition, apart from its general significance for the fundamental physics research, would also enable quantum information processing that outperforms protocols in which the underlying causal structure is definite. In this paper, we start with a proposition that an observer in a state of quantum superposition of being at two different relative distances from the event horizon of a black hole, effectively resides in ICO space-time generated by the black hole. By invoking the fact that the near-horizon geometry of a Schwarzschild black hole is that of a Rindler space-time, we propose a way to simulate an observer in ICO space-time by a Rindler observer in a state of superposition of having two different proper accelerations. By extension, a pair of Rindler observers with entangled proper accelerations simulates a pair of entangled ICO observers. Moreover, these Rindler-systems might have a plausible experimental realization by means of optomechanical resonators.