No Arabic abstract
The fundamental dynamics of quantum particles is neutral with respect to the arrow of time. And yet, our experiments are not: we observe quantum systems evolving from the past to the future, but not the other way round. A fundamental question is whether it is in principle possible to probe a quantum dynamics in the backward direction, or in more general combinations of the forward and the backward direction. To answer this question, we characterise all possible time-reversals that satisfy four natural requirements and we identify the largest set of quantum processes that can in principle be probed in both time directions. Then, we show that quantum theory is compatible with the existence of a new kind of operations where the arrow of time is indefinite. We explicitly construct one such operation, called the quantum time flip, and show that it cannot be realised by any quantum circuit with a definite direction of time. The quantum time flip offers an advantage in a game where a referee challenges a player to identify a hidden relation between two gates, and can be experimentally simulated with photonic systems, shedding light on the information-processing capabilities of exotic scenarios in which the arrow of time is in a quantum superposition.
We consider the evolution of an arbitrary quantum dynamical semigroup of a finite-dimensional quantum system under frequent kicks, where each kick is a generic quantum operation. We develop a generalization of the Baker-Campbell-Hausdorff formula allowing to reformulate such pulsed dynamics as a continuous one. This reveals an adiabatic evolution. We obtain a general type of quantum Zeno dynamics, which unifies all known manifestations in the literature as well as describing new types.
It has been shown that it is theoretically possible for there to exist higher-order quantum processes in which the operations performed by separate parties cannot be ascribed a definite causal order. Some of these processes are believed to have a physical realization in standard quantum mechanics via coherent control of the times of the operations. A prominent example is the quantum SWITCH, which was recently demonstrated experimentally. However, the interpretation of such experiments as realizations of a process with indefinite causal structure as opposed to some form of simulation of such a process has remained controversial. Where exactly are the local operations of the parties in such an experiment? On what spaces do they act given that their times are indefinite? Can we probe them directly rather than assume what they ought to be based on heuristic considerations? How can we reconcile the claim that these operations really take place, each once as required, with the fact that the structure of the presumed process implies that they cannot be part of any acyclic circuit? Here, I offer a precise answer to these questions: the input and output systems of the operations in such a process are generally nontrivial subsystems of Hilbert spaces that are tensor products of Hilbert spaces associated with systems at different times---a fact that is directly experimentally verifiable. With respect to these time-delocalized subsystems, the structure of the process is one of a circuit with a causal cycle. I also identify a whole class of isometric processes, of which the quantum SWITCH is a special case, that admit a physical realization on time-delocalized subsystems. These results unveil a novel structure within quantum mechanics, which may have important implications for physics and information processing.
The evolution of quantum light through linear optical devices can be described by the scattering matrix $S$ of the system. For linear optical systems with $m$ possible modes, the evolution of $n$ input photons is given by a unitary matrix $U=varphi_{m,M}(S)$ given by a known homomorphism, $varphi_{m,M}$, which depends on the size of the resulting Hilbert space of the possible photon states, $M$. We present a method to decide whether a given unitary evolution $U$ for $n$ photons in $m$ modes can be achieved with linear optics or not and the inverse transformation $varphi_{m,M}^{-1}$ when the transformation can be implemented. Together with previous results, the method can be used to find a simple optical system which implements any quantum operation within the reach of linear optics. The results come from studying the adjoint map bewtween the Lie algebras corresponding to the Lie groups of the relevant unitary matrices.
It is shown that the dimension of the multilinear quantum Lie operations space is either equal to zero or included between $(n-2)!$ and $(n-1)!.$ The lower bound is achieved if the intersection of all conforming subsets is nonempty, while the upper bound does if all subsets are conforming. We show that almost always the quantum Lie operations space is generated by symmetric ones. In particular, the space of all general $n$-linear quantum Lie operations does. All possible exceptions are described.
By studying the set of correlations that are theoretically possible between physical systems without allowing for signalling of information backwards in time, we here identify correlations that can only be achieved if the time ordering between the systems is fundamentally indefinite. These correlations, if they exist in nature, must result from non-classical, non-deterministic time, and so may have relevance for quantum (or post-quantum) gravity, where a definite global time might not exist.