No Arabic abstract
Effective Capacity defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between effective capacity and power consumption. We analyze the EEE of ultra-reliable networks operating in the finite blocklength regime. We obtain a closed form approximation for the EEE in quasi-static Nakagami-$m$ (and Rayleigh as sub-case) fading channels as a function of power, error probability, and latency. Furthermore, we characterize the QoS constrained EEE maximization problem for different power consumption models, which shows a significant difference between finite and infinite blocklength coding with respect to EEE and optimal power allocation strategy. As asserted in the literature, achieving ultra-reliability using one transmission consumes huge amount of power, which is not applicable for energy limited IoT devices. In this context, accounting for empty buffer probability in machine type communication (MTC) and extending the maximum delay tolerance jointly enhances the EEE and allows for adaptive retransmission of faulty packets. Our analysis reveals that obtaining the optimum error probability for each transmission by minimizing the non-empty buffer probability approaches EEE optimality, while being analytically tractable via Dinkelbachs algorithm. Furthermore, the results illustrate the power saving and the significant EEE gain attained by applying adaptive retransmission protocols, while sacrificing a limited increase in latency.
Effective Capacity (EC) indicates the maximum communication rate subject to a certain delay constraint while effective energy efficiency (EEE) denotes the ratio between EC and power consumption. In this paper, we analyze the EEE of ultra-reliable networks operating in the finite blocklength regime. We obtain a closed form approximation for the EEE in Rayleigh block fading channels as a function of power, error probability, and delay. We show the optimum power allocation strategy for maximizing the EEE in finite blocklength transmission which reveals that Shannons model underestimates the optimum power when compared to the exact finite blocklength model. Furthermore, we characterize the buffer constrained EEE maximization problem for different power consumption models. The results show that accounting for empty buffer probability (EBP) and extending the maximum delay tolerance jointly enhance the EC and EEE.
In this letter, we analyze the achievable rate of ultra-reliable low-latency communications (URLLC) in a randomly modeled wireless network. We use two mathematical tools to properly characterize the considered system: i) stochastic geometry to model spatial locations of the transmitters in a network, and ii) finite block-length analysis to reflect the features of the short-packets. Exploiting these tools, we derive an integral-form expression of the decoding error probability as a function of the target rate, the path-loss exponent, the communication range, the density, and the channel coding length. We also obtain a tight approximation as a closed-form. The main finding from the analytical results is that, in URLLC, increasing the signal-to-interference ratio (SIR) brings significant improvement of the rate performance compared to increasing the channel coding length. Via simulations, we show that fractional frequency reuse improves the area spectral efficiency by reducing the amount of mutual interference.
With the phenomenal growth of the Internet of Things (IoT), Ultra Reliable Low Latency Communications (URLLC) has potentially been the enabler to guarantee the stringent requirements on latency and reliability. However, how to achieve low latency and ultra-reliability with the random arrival remains open. In this paper, a queue-aware variable-length channel coding is presented over the single URLLC user link, in which the finite blocklength of channel coding is determined based on the random arrival. More particularly, a cross-layer approach is proposed for the URLLC user to establish the optimal tradeoff between the latency and power consumption. With a probabilistic coding framework presented, the cross-layer variable-length coding can be characterized based on a Markov chain. In this way, the optimal delay-power tradeoff is given by formulating an equivalent Linear Programming (LP). By solving this LP, the delay-optimal variable-length coding can be presented based on a threshold-structure on the queue length.
In this work, we develop low complexity, optimal power allocation algorithms that would allow ultra reliable operation at any outage probability target with minimum power consumption in the finite blocklength regime by utilizing Karush-Kuhn-Tucker (KKT) conditions. In our setup, we assume that the transmitter does not know the channel state information (CSI). First, we show that achieving a very low packet outage probability by using an open loop setup requires extremely high power consumption. Thus, we resort to retransmission schemes as a solution, namely Automatic Repeat Request (ARQ), Chase Combining Hybrid ARQ (CC-HARQ) and Incremental Redundancy (IR) HARQ. Countrary to classical approaches, where it is optimal to allocate equal power with each transmission, we show that for operation in the ultra reliable regime (URR), the optimal strategy suggests transmission with incremental power in each round. Numerically, we evaluate the power gains of the proposed protocol. We show that the best power saving is given by IR-HARQ protocol. Further, we show that when compared to the one shot transmission, these protocols enable large average and maximum power gains. Finally, we show that the larger the number of transmissions is, the larger power gains will be attained.
We analyze a cooperative wireless communication system with finite block length and finite battery energy, under quasi-static Rayleigh fading. Source and relay nodes are powered by a wireless energy transfer (WET) process, while using the harvested energy to feed their circuits, send pilot signals to estimate channels at receivers, and for wireless information transmission (WIT). Other power consumption sources beyond data transmission power are considered. The error probability is investigated under perfect/imperfect channel state information (CSI), while reaching accurate closed-form approximations in ideal direct communication system setups. We consider ultra-reliable communication (URC) scenarios under discussion for the next fifth-generation (5G) of wireless systems. The numerical results show the existence of an optimum pilot transmit power for channel estimation, which increases with the harvested energy. We also show the importance of cooperation, even taking into account the multiplexing loss, in order to meet the error and latency constraints of the URC systems.