Do you want to publish a course? Click here

Rate Analysis of Ultra-Reliable Low-Latency Communications in Random Wireless Networks

75   0   0.0 ( 0 )
 Added by Jeonghun Park
 Publication date 2019
and research's language is English
 Authors Jeonghun Park




Ask ChatGPT about the research

In this letter, we analyze the achievable rate of ultra-reliable low-latency communications (URLLC) in a randomly modeled wireless network. We use two mathematical tools to properly characterize the considered system: i) stochastic geometry to model spatial locations of the transmitters in a network, and ii) finite block-length analysis to reflect the features of the short-packets. Exploiting these tools, we derive an integral-form expression of the decoding error probability as a function of the target rate, the path-loss exponent, the communication range, the density, and the channel coding length. We also obtain a tight approximation as a closed-form. The main finding from the analytical results is that, in URLLC, increasing the signal-to-interference ratio (SIR) brings significant improvement of the rate performance compared to increasing the channel coding length. Via simulations, we show that fractional frequency reuse improves the area spectral efficiency by reducing the amount of mutual interference.



rate research

Read More

70 - Xiaoyu Zhao , Wei Chen 2019
With the phenomenal growth of the Internet of Things (IoT), Ultra Reliable Low Latency Communications (URLLC) has potentially been the enabler to guarantee the stringent requirements on latency and reliability. However, how to achieve low latency and ultra-reliability with the random arrival remains open. In this paper, a queue-aware variable-length channel coding is presented over the single URLLC user link, in which the finite blocklength of channel coding is determined based on the random arrival. More particularly, a cross-layer approach is proposed for the URLLC user to establish the optimal tradeoff between the latency and power consumption. With a probabilistic coding framework presented, the cross-layer variable-length coding can be characterized based on a Markov chain. In this way, the optimal delay-power tradeoff is given by formulating an equivalent Linear Programming (LP). By solving this LP, the delay-optimal variable-length coding can be presented based on a threshold-structure on the queue length.
Effective Capacity defines the maximum communication rate subject to a specific delay constraint, while effective energy efficiency (EEE) indicates the ratio between effective capacity and power consumption. We analyze the EEE of ultra-reliable networks operating in the finite blocklength regime. We obtain a closed form approximation for the EEE in quasi-static Nakagami-$m$ (and Rayleigh as sub-case) fading channels as a function of power, error probability, and latency. Furthermore, we characterize the QoS constrained EEE maximization problem for different power consumption models, which shows a significant difference between finite and infinite blocklength coding with respect to EEE and optimal power allocation strategy. As asserted in the literature, achieving ultra-reliability using one transmission consumes huge amount of power, which is not applicable for energy limited IoT devices. In this context, accounting for empty buffer probability in machine type communication (MTC) and extending the maximum delay tolerance jointly enhances the EEE and allows for adaptive retransmission of faulty packets. Our analysis reveals that obtaining the optimum error probability for each transmission by minimizing the non-empty buffer probability approaches EEE optimality, while being analytically tractable via Dinkelbachs algorithm. Furthermore, the results illustrate the power saving and the significant EEE gain attained by applying adaptive retransmission protocols, while sacrificing a limited increase in latency.
We analyze a cooperative wireless communication system with finite block length and finite battery energy, under quasi-static Rayleigh fading. Source and relay nodes are powered by a wireless energy transfer (WET) process, while using the harvested energy to feed their circuits, send pilot signals to estimate channels at receivers, and for wireless information transmission (WIT). Other power consumption sources beyond data transmission power are considered. The error probability is investigated under perfect/imperfect channel state information (CSI), while reaching accurate closed-form approximations in ideal direct communication system setups. We consider ultra-reliable communication (URC) scenarios under discussion for the next fifth-generation (5G) of wireless systems. The numerical results show the existence of an optimum pilot transmit power for channel estimation, which increases with the harvested energy. We also show the importance of cooperation, even taking into account the multiplexing loss, in order to meet the error and latency constraints of the URC systems.
In this paper, the impact of in-band full-duplex (IBFD) wireless communications on secret key generation via physical layer channel state information is investigated. A key generation strategy for IBFD wireless devices to increase the rate of generated secret keys over multipath fading channels is proposed. Conventionally, due to the half-duplex (HD) constraint on wireless transmissions, sensing simultaneous reciprocal channel measurements is not possible, which leads to a degraded key generation rate. However, with the advent of IBFD wireless devices, the legitimate nodes can sense the shared wireless link simultaneously at the possible cost of a self-interference (SI) channel estimation and some residual self-interference (RSI). As we demonstrate, with HD correlated observations the key rate is upper bounded by a constant, while with IBFD the key rate is only limited by the SI cancellation performance and is in general greater than that of its HD counterpart. Our analysis shows that with reasonable levels of SI cancellation, in the high SNR regime the key rate of IBFD is much higher, while in low SNRs, the HD system performs better. Finally, the key rate loss due to the overhead imposed by the SI channel estimation phase is discussed.
Rate-Splitting Multiple Access (RSMA) is an emerging flexible and powerful multiple access for downlink multiantenna networks. In this paper, we introduce the concept of RSMA into short-packet downlink communications. We design optimal linear precoders that maximize the sum rate with Finite Blocklength (FBL) constraints. The relations between the sum rate and blocklength of RSMA are investigated for a wide range of network loads and user deployments. Numerical results demonstrate that RSMA can achieve the same transmission rate as Non-Orthogonal Multiple Access (NOMA) and Space Division Multiple Access (SDMA) with shorter blocklengths (and therefore lower latency), especially in overloaded multi-antenna networks. Hence, we conclude that RSMA is a promising multiple access for low-latency communications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا