Do you want to publish a course? Click here

Multimodality in VR: A survey

81   0   0.0 ( 0 )
 Added by Daniel Martin
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Virtual reality (VR) is rapidly growing, with the potential to change the way we create and consume content. In VR, users integrate multimodal sensory information they receive, to create a unified perception of the virtual world. In this survey, we review the body of work addressing multimodality in VR, and its role and benefits in user experience, together with different applications that leverage multimodality in many disciplines. These works thus encompass several fields of research, and demonstrate that multimodality plays a fundamental role in VR; enhancing the experience, improving overall performance, and yielding unprecedented abilities in skill and knowledge transfer.



rate research

Read More

With the continuing development of affordable immersive virtual reality (VR) systems, there is now a growing market for consumer content. The current form of consumer systems is not dissimilar to the lab-based VR systems of the past 30 years: the primary input mechanism is a head-tracked display and one or two tracked hands with buttons and joysticks on hand-held controllers. Over those 30 years, a very diverse academic literature has emerged that covers design and ergonomics of 3D user interfaces (3DUIs). However, the growing consumer market has engaged a very broad range of creatives that have built a very diverse set of designs. Sometimes these designs adopt findings from the academic literature, but other times they experiment with completely novel or counter-intuitive mechanisms. In this paper and its online adjunct, we report on novel 3DUI design patterns that are interesting from both design and research perspectives: they are highly novel, potentially broadly re-usable and/or suggest interesting avenues for evaluation. The supplemental material, which is a living document, is a crowd-sourced repository of interesting patterns. This paper is a curated snapshot of those patterns that were considered to be the most fruitful for further elaboration.
71 - Gregoire Cattan 2020
A brain-computer interface (BCI) based on electroencephalography (EEG) is a promising technology for enhancing virtual reality (VR) applications-in particular, for gaming. We focus on the so-called P300-BCI, a stable and accurate BCI paradigm relying on the recognition of a positive event-related potential (ERP) occurring in the EEG about 300 ms post-stimulation. We implemented a basic version of such a BCI displayed on an ordinary and affordable smartphone-based head-mounted VR device: that is, a mobile and passive VR system (with no electronic components beyond the smartphone). The mobile phone performed the stimuli presentation, EEG synchronization (tagging) and feedback display. We compared the ERPs and the accuracy of the BCI on the VR device with a traditional BCI running on a personal computer (PC). We also evaluated the impact of subjective factors on the accuracy. The study was within-subjects, with 21 participants and one session in each modality. No significant difference in BCI accuracy was found between the PC and VR systems, although the P200 ERP was significantly wider and larger in the VR system as compared to the PC system.
In this article we report a case study of a Language Learning Bauhaus VR hackathon with Goethe Institute. It was organized as an educational and research project to tap into the dynamics of transdisciplinary teams challenged with a specific requirement. In our case, it was to build a Bauhaus-themed German Language Learning VR App. We constructed this experiment to simulate how representatives of different disciplines may work together towards a very specific purpose under time pressure. So, each participating team consisted of members of various expert-fields: software development (Unity or Unreal), design, psychology and linguistics. The results of this study cast light on the recommended cycle of design thinking and customer-centered design in VR. Especially in interdisciplinary rapid prototyping conditions, where stakeholders initially do not share competences. They also showcase educational benefits of working in transdisciplinary environments. This study, combined with our previous work on human factors in rapid software development and co-design, including hackathon dynamics, allowed us to formulate recommendations for organizing content creation VR hackathons for specific purposes. We also provide guidelines on how to prepare the participants to work in rapid prototyping VR environments and benefit from such experiences in the long term.
Knowledge of human perception has long been incorporated into visualizations to enhance their quality and effectiveness. The last decade, in particular, has shown an increase in perception-based visualization research studies. With all of this recent progress, the visualization community lacks a comprehensive guide to contextualize their results. In this report, we provide a systematic and comprehensive review of research studies on perception related to visualization. This survey reviews perception-focused visualization studies since 1980 and summarizes their research developments focusing on low-level tasks, further breaking techniques down by visual encoding and visualization type. In particular, we focus on how perception is used to evaluate the effectiveness of visualizations, to help readers understand and apply the principles of perception of their visualization designs through a task-optimized approach. We concluded our report with a summary of the weaknesses and open research questions in the area.
69 - Aoyu Wu , Yun Wang , Xinhuan Shu 2021
Visualizations themselves have become a data format. Akin to other data formats such as text and images, visualizations are increasingly created, stored, shared, and (re-)used with artificial intelligence (AI) techniques. In this survey, we probe the underlying vision of formalizing visualizations as an emerging data format and review the recent advance in applying AI techniques to visualization data (AI4VIS). We define visualization data as the digital representations of visualizations in computers and focus on data visualization (e.g., charts and infographics). We build our survey upon a corpus spanning ten different fields in computer science with an eye toward identifying important common interests. Our resulting taxonomy is organized around WHAT is visualization data and its representation, WHY and HOW to apply AI to visualization data. We highlight a set of common tasks that researchers apply to the visualization data and present a detailed discussion of AI approaches developed to accomplish those tasks. Drawing upon our literature review, we discuss several important research questions surrounding the management and exploitation of visualization data, as well as the role of AI in support of those processes. We make the list of surveyed papers and related material available online at ai4vis.github.io.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا