No Arabic abstract
We present a comprehensive analysis of 20 years worth of multi-color photometric light curves, multi-epoch optical spectra, and X-ray data of an off-nuclear variable object SDSS1133 in Mrk 177 at $z=0.0079$. The UV-optical light curves reveal that SDSS1133 experienced three outbursts in 2001, 2014, and 2019. The persistent UV-optical luminosity in the non-outbursting state is $sim 10^{41}$ erg/s with small-scale flux variations, and peak luminosities during the outbursts reach $sim 10^{42}$ erg/s. The optical spectra exhibit enduring broad hydrogen Balmer P-Cygni profiles with the absorption minimum at $sim -2,000$ km/s, indicating the presence of fast moving ejecta. Chandra detected weak X-ray emission at a 0.3-10 keV luminosity of $L_{X} = 4 times 10^{38}$ erg/s after the 2019 outburst. These lines of evidence strongly suggests that SDSS1133 is an extremely luminous blue variable (LBV) star experiencing multiple giant eruptions with interactions of the ejected shell with different shells and/or circumstellar medium (CSM), and strongly disfavors the recoiling Active Galactic Nuclei (AGN) scenario suggested in the literature. We suggest that pulsational pair-instability may provide a viable explanation for the multiple energetic eruptions in SDSS1133. If the current activity of SDSS1133 is a precursor of a supernova explosion, we may be able to observe a few additional giant eruptions and then the terminal supernova explosion in future observations.
We report the discovery of a candidate stellar-mass black hole in the Milky Way globular cluster M62. We detected the black hole candidate, which we term M62-VLA1, in the core of the cluster using deep radio continuum imaging from the Karl G. Jansky Very Large Array. M62-VLA1 is a faint source, with a flux density of 18.7 +/- 1.9 microJy at 6.2 GHz and a flat radio spectrum (alpha=-0.24 +/- 0.42, for S_nu = nu^alpha). M62 is the second Milky Way cluster with a candidate stellar-mass black hole; unlike the two candidate black holes previously found in the cluster M22, M62-VLA1 is associated with a Chandra X-ray source, supporting its identification as a black hole X-ray binary. Measurements of its radio and X-ray luminosity, while not simultaneous, place M62-VLA1 squarely on the well-established radio--X-ray correlation for stellar-mass black holes. In archival Hubble Space Telescope imaging, M62-VLA1 is coincident with a star near the lower red giant branch. This possible optical counterpart shows a blue excess, H alpha emission, and optical variability. The radio, X-ray, and optical properties of M62-VLA1 are very similar to those for V404 Cyg, one of the best-studied quiescent stellar-mass black holes. We cannot yet rule out alternative scenarios for the radio source, such as a flaring neutron star or background galaxy; future observations are necessary to determine whether M62-VLA1 is indeed an accreting stellar-mass black hole.
We present detailed analysis of the transient X-ray source 2XMMi J003833.3+402133 detected by XMM-Newton in January 2008 during a survey of M 31. The X-ray spectrum is well fitted by either a steep power law plus a blackbody model or a double blackbody model. Prior observations with XMM-Newton, Chandra, Swift and ROSAT spanning 1991 to 2007, as well as an additional Swift observation in 2011, all failed to detect this source. No counterpart was detected in deep optical imaging with the Canada France Hawaii Telescope down to a 3sigma lower limit of g = 26.5 mag. This source has previously been identified as a black hole X-ray binary in M 31. While this remains a possibility, the transient behaviour, X-ray spectrum, and lack of an optical counterpart are equally consistent with a magnetar interpretation for 2XMMi J003833.3+402133. The derived luminosity and blackbody emitting radius at the distance of M 31 argue against an extragalactic location, implying that if it is indeed a magnetar it is located within the Milky Way but 22deg out of the plane. The high Galactic latitude could be explained if 2XMMi J003833.3+402133 were an old magnetar, or if its progenitor was a runaway star that traveled away from the plane prior to going supernova.
We present a catalogue of candidate H{alpha} emission and absorption line sources and blue objects in the Galactic Bulge Survey (GBS) region. We use a point source catalogue of the GBS fields (two strips of (l x b) = (6 x 1) degrees centred at b = 1.5 above and below the Galactic centre), covering the magnitude range 16 < r < 22.5. We utilize (r-i, r-H{alpha}) colour-colour diagrams to select H{alpha} emission and absorption line candidates, and also identify blue objects (compared to field stars) using the r-i colour index. We identify 1337 H{alpha} emission line candidates and 336 H{alpha} absorption line candidates. These catalogues likely contain a plethora of sources, ranging from active (binary) stars, early-type emission line objects, cataclysmic variables (CVs) and low-mass X-ray binaries (LMXBs) to background active galactic nuclei (AGN). The 389 blue objects we identify are likely systems containing a compact object, such as CVs, planetary nebulae and LMXBs. Hot subluminous dwarfs (sdO/B stars) are also expected to be found as blue outliers. Crossmatching our outliers with the GBS X-ray catalogue yields sixteen sources, including seven (magnetic) CVs and one qLMXB candidate among the emission line candidates, and one background AGN for the absorption line candidates. One of the blue outliers is a high state AM CVn system. Spectroscopic observations combined with the multi-wavelength coverage of this area, including X-ray, ultraviolet and (time-resolved) optical and infrared observations, can be used to further constrain the nature of individual sources.
(Abridged) Narrow Line Seyfert 1 (NLS1) galaxies have low mass black holes and mass accretion rates close to (or exceeding) Eddington, so a standard blackbody accretion disc should peak in the EUV. However, the lack of true absorption opacity in the disc means that the emission is better approximated by a colour temperature corrected blackbody, and this colour temperature correction is large enough ($sim 2.4$) that the bare disc emission from a zero spin black hole can extend into the soft X-ray bandpass. Part of the soft X-ray excess seen in these objects must be intrinsic emission from the disc unless the vertical structure is very different to that predicted. However, the soft excess is much broader than predicted by a bare disc spectrum, indicating some Compton upscattering by cool, optically thick material. We associate this with the disc itself, so it must ultimately be powered by mass accretion. We build an energetically self consistent model assuming that the emission thermalises at large radii, but that at smaller radii the gravitational energy is split between powering optically thick Comptonised disc emission (forming the soft X-ray excess) and an optically thin corona above the disc (forming the tail to higher energies). We show examples of this model fit to the extreme NLS1 REJ1034+396, and to the much lower Eddington fraction Broad Line Seyfert 1 PG1048+231. We use these to guide our fits and interpretations of three template spectra made from co-adding multiple sources to track out a sequence of AGN spectra as a function of $L/L_{Edd}$. The new model is publically available within the {sc xspec} spectral fitting package.
The Seyfert 1 galaxy, Ark 120, is a prototype example of the so-called class of bare nucleus AGN, whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep ($>400$ ks exposure), high resolution X-ray spectroscopy of Ark 120 is presented, from XMM-Newton observations which were carried out in March 2014, together with simultaneous Chandra/HETG exposures. The high resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the ISM of our own Galaxy, with a possible slight enhancement of the Oxygen abundance required with respect to the expected ISM values in the Solar neighbourhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated to the AGN and arising from the He and H-like ions of N, O, Ne and Mg. The He-like line profiles of N, O and Ne appear velocity broadened, with typical FWHM widths of $sim5000$ km s$^{-1}$, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from gas of density $n_{rm e}sim10^{11}$ cm$^{-3}$, while the photoionization calculations infer that the emitting gas covers at least 10 percent of $4pi$ steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical-UV Broad Line Region on sub-pc scales, whereas the narrow profiles originate on larger pc scales, perhaps coincident with the AGN Narrow Line Region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray emitting gas exists out of our direct line of sight towards this AGN.