Do you want to publish a course? Click here

Intrinsic disc emission and the Soft X-ray Excess in AGN

174   0   0.0 ( 0 )
 Added by Chris Done
 Publication date 2011
  fields Physics
and research's language is English
 Authors Chris Done




Ask ChatGPT about the research

(Abridged) Narrow Line Seyfert 1 (NLS1) galaxies have low mass black holes and mass accretion rates close to (or exceeding) Eddington, so a standard blackbody accretion disc should peak in the EUV. However, the lack of true absorption opacity in the disc means that the emission is better approximated by a colour temperature corrected blackbody, and this colour temperature correction is large enough ($sim 2.4$) that the bare disc emission from a zero spin black hole can extend into the soft X-ray bandpass. Part of the soft X-ray excess seen in these objects must be intrinsic emission from the disc unless the vertical structure is very different to that predicted. However, the soft excess is much broader than predicted by a bare disc spectrum, indicating some Compton upscattering by cool, optically thick material. We associate this with the disc itself, so it must ultimately be powered by mass accretion. We build an energetically self consistent model assuming that the emission thermalises at large radii, but that at smaller radii the gravitational energy is split between powering optically thick Comptonised disc emission (forming the soft X-ray excess) and an optically thin corona above the disc (forming the tail to higher energies). We show examples of this model fit to the extreme NLS1 REJ1034+396, and to the much lower Eddington fraction Broad Line Seyfert 1 PG1048+231. We use these to guide our fits and interpretations of three template spectra made from co-adding multiple sources to track out a sequence of AGN spectra as a function of $L/L_{Edd}$. The new model is publically available within the {sc xspec} spectral fitting package.



rate research

Read More

Reverberation lags have recently been discovered in a handful of nearby, variable AGN. Here, we analyze a ~100 ksec archival XMM-Newton observation of the highly variable AGN, ESO 113-G010 in order to search for lags between hard, 1.5 - 4.5 keV, and soft, 0.3 - 0.9 keV, energy X-ray bands. At the lowest frequencies available in the lightcurve (<1.5E-4 Hz), we find hard lags where the power-law dominated hard band lags the soft band (where the reflection fraction is high). However, at higher frequencies in the range (2-3)E-4 Hz we find a soft lag of -325 +/- 89 s. The general evolution from hard to soft lags as the frequency increases is similar to other AGN where soft lags have been detected. We interpret this soft lag as due to reverberation from the accretion disk, with the reflection component responding to variability from the X-ray corona. For a black hole mass of 7E6 M(solar) this corresponds to a light-crossing time of ~9 R_g/c, however, dilution effects mean that the intrinsic lag is likely longer than this. Based on recent black hole mass-scaling for lag properties, the lag amplitude and frequency are more consistent with a black hole a few times more massive than the best estimates, though flux-dependent effects could easily add scatter this large.
520 - P.O. Petrucci 2017
The X-ray spectra of many active galactic nuclei (AGN) show a soft X-ray excess below 1-2 keV on top of the extrapolated high- energy power law. The origin of this component is uncertain. It could be a signature of relativistically blurred, ionized reflection, or the high-energy tail of thermal Comptonization in a warm (kT $sim$ 1 keV), optically thick ($tausimeq$ 10-20) corona producing the optical/UV to soft X-ray emission. The purpose of the present paper is to test the warm corona model on a statistically significant sample of unabsorbed, radio-quiet AGN with XMM-newton archival data, providing simultaneous optical/UV and X-ray coverage. The sample has 22 objects and 100 observations. We use two thermal comptonization components to fit the broad-band spectra, one for the warm corona emission and one for the high-energy continuum. In the optical-UV, we also include the reddening, the small blue bump and the Galactic extinction. In the X-rays, we include a WA and a neutral reflection. The model gives a good fit (reduced $chi^2 <1.5$) to more than 90% of the sample. We find the temperature of the warm corona to be uniformly distributed in the 0.1-1 keV range, while the optical depth is in the range $sim$10-40. These values are consistent with a warm corona covering a large fraction of a quasi-passive accretion disc, i.e. that mostly reprocesses the warm corona emission. The disk intrinsic emission represents no more than 20% of the disk total emission. According to this interpretation, most of the accretion power would be released in the upper layers of the accretion flow.
The X-ray spectra of many active galactic nuclei (AGN) exhibit a `soft excess below 1keV, whose physical origin remains unclear. Diverse models have been suggested to account for it, including ionised reflection of X-rays from the inner part of the accretion disc, ionised winds/absorbers, and Comptonisation. The ionised reflection model suggests a natural link between the prominence of the soft excess and the Compton reflection hump strength above 10keV, but it has not been clear what hard X-ray signatures, if any, are expected from the other soft X-ray candidate models. Additionally, it has not been possible up until recently to obtain high-quality simultaneous measurements of both soft and hard X-ray emission necessary to distinguish these models, but upcoming joint XMM-NuSTAR programmes provide precisely this opportunity. In this paper, we present an extensive analysis of simulations of XMM+NuSTAR observations, using two candidate soft excess models as inputs, to determine whether such campaigns can disambiguate between them by using hard and soft X-ray observations in tandem. The simulated spectra are fit with the simplest observers model of a black body and neutral reflection to characterise the strength of the soft and hard excesses. A plot of the strength of the hard excess against the soft excess strength provides a diagnostic plot which allows the soft excess production mechanism to be determined in individual sources and samples using current state-of-the-art and next generation hard X-ray enabled observatories. This approach can be straightforwardly extended to other candidate models for the soft excess.
The Seyfert 1 galaxy, Ark 120, is a prototype example of the so-called class of bare nucleus AGN, whereby there is no known evidence for the presence of ionized gas along the direct line of sight. Here deep ($>400$ ks exposure), high resolution X-ray spectroscopy of Ark 120 is presented, from XMM-Newton observations which were carried out in March 2014, together with simultaneous Chandra/HETG exposures. The high resolution spectra confirmed the lack of intrinsic absorbing gas associated with Ark 120, with the only X-ray absorption present originating from the ISM of our own Galaxy, with a possible slight enhancement of the Oxygen abundance required with respect to the expected ISM values in the Solar neighbourhood. However, the presence of several soft X-ray emission lines are revealed for the first time in the XMM-Newton RGS spectrum, associated to the AGN and arising from the He and H-like ions of N, O, Ne and Mg. The He-like line profiles of N, O and Ne appear velocity broadened, with typical FWHM widths of $sim5000$ km s$^{-1}$, whereas the H-like profiles are unresolved. From the clean measurement of the He-like triplets, we deduce that the broad lines arise from gas of density $n_{rm e}sim10^{11}$ cm$^{-3}$, while the photoionization calculations infer that the emitting gas covers at least 10 percent of $4pi$ steradian. Thus the broad soft X-ray profiles appear coincident with an X-ray component of the optical-UV Broad Line Region on sub-pc scales, whereas the narrow profiles originate on larger pc scales, perhaps coincident with the AGN Narrow Line Region. The observations show that Ark 120 is not intrinsically bare and substantial X-ray emitting gas exists out of our direct line of sight towards this AGN.
179 - M. Diaz Trigo , L. Boirin 2012
We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities) can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا