Do you want to publish a course? Click here

Time Evolution of Lepton Number Carried by Majorana Neutrinos

55   0   0.0 ( 0 )
 Added by Takuya Morozumi
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We revisit the time evolution of the lepton family number for a SU(2) doublet consisting of a neutrino and a charged lepton. The lepton family number is defined through the weak basis of the SU(2) doublet, where the charged lepton mass matrix is real and diagonal. The lepton family number carried by the neutrino is defined by the left-handed current of the neutrino family. For this work we assume the neutrinos have Majorana mass. This Majorana mass term is switched on at time $t=0$ and the lepton family number is evolved. Since the operator in the flavor eigenstate is continuously connected to that of the mass eigenstate, the creation and annihilation operators for the two eigenstates are related to each other. We compute the time evolution of all lepton family numbers by choosing a specific initial flavor eigenstate for a neutrino. The evolution is studied for relativistic and nonrelativistic neutrinos. The nonrelativistic region is of particular interest for the Cosmic Neutrino Background predicted from big bang models. In that region we find the lepton family numbers are sensitive to Majorana and Dirac phases, the absolute mass, and mass hierarchy of neutrinos.



rate research

Read More

72 - Chao Guo 2017
The neutrinophilic two-Higgs-doublet model ($ u$2HDM) provides a natural way to generate tiny neutrino mass from interactions with the new doublet scalar $Phi_ u$ ($H^pm,~H,~A$) and singlet neutrinos $N_R$ of TeV scale. In this paper, we perform detailed simulations for the lepton number violating (LNV) signatures at LHC arising from cascade decays of the new scalars and neutrinos with the mass order $m_{N_R}<m_{Phi_ u}$. Under constraints from lepton flavor violating processes and direct collider searches, their decay properties are explored and lead to three types of LNV signatures: $2ell^pm 4j+cancel{E}_T$, $3ell^pm 4j+cancel{E}_T$, and $3ell^pmell^mp 4j$. We find that the same-sign trilepton signature $3ell^pm4j+cancel{E}_T$ is quite unique and is the most promising discovery channel at the high-luminosity LHC. Our analysis also yields the $95%$ C.L. exclusion limits in the plane of the $Phi_ u$ and $N_R$ masses at 13 (14) TeV LHC with an integrated luminosity of 100~(3000)/fb.
We develop the consequences of introducing a purely leptonic, lepton number violating non-standard interaction (NSI) and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) result from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford Medium Energy Neutrino Experiment (KARMEN). We make a comprehensive analysis of lepton number violating, NSI effective operators and find nine that affect muon decay relevant to LSND results. Two of these preserve the standard model (SM) value 3/4 for the Michel rho and delta parameters and, overall, show favorable agreement with precision data and the electron anti-neutrino signal from LSND data. We display theoretical models that lead to these two effective operators. In the model we choose to apply to DAR data, both electron anti-neutrino appearance from muon anti-neutrino oscillation and electron anti-neutrino survival after production from NSI decay of the positive muon contribute to the expected signal. This is a unique feature of our scheme. We find a range of parameters where both experiments can be accommodated consistently with recent global, sterile neutrino fits to short baseline data. We comment on implications of the models for new physics searches at colliders and comment on further implications of the lepton number violating interactions plus sterile neutrino-standard model neutrino mixing.
An observation of any lepton number violating process will undoubtedly point towards the existence of new physics and indirectly to the clear Majorana nature of the exchanged fermion. In this work, we explore the potential of a minimal extension of the Standard Model via heavy sterile fermions with masses in the $[ 0.1 - 10]$ GeV range concerning an extensive array of neutrinoless meson and tau decay processes. We assume that the Majorana neutrinos are produced on-shell, and focus on three-body decays. We conduct an update on the bounds on the active-sterile mixing elements, $|U_{ell_alpha 4} U_{ell_beta 4}|$, taking into account the most recent experimental bounds (and constraints) and new theoretical inputs, as well as the effects of a finite detector, imposing that the heavy neutrino decay within the detector. This allows to establish up-to-date comprehensive constraints on the sterile fermion parameter space. Our results suggest that the branching fractions of several decays are close to current sensitivities (likely within reach of future facilities), some being already in conflict with current data (as is the case of $K^+ to ell_alpha^+ ell_beta^+ pi^-$, and $tau^- to mu^+ pi^- pi^-$). We use these processes to extract constraints on all entries of an enlarged definition of a $3times 3$ effective Majorana neutrino mass matrix $m_{ u}^{alpha beta}$.
We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both high-scale as well as low-scale variants, with either explicit or spontaneously broken lepton number symmetry $U(1)_L$ in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken $U(1)_L$ and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detectability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken $U(1)_L$ at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.
75 - Kazuo Fujikawa 2019
The Majorana neutrino $psi_{M}(x)$ when constructed as a superposition of chiral fermions such as $ u_{L} + Coverline{ u_{L}}^{T}$ is characterized by $ ({cal C}{cal P}) psi_{M}(x)({cal C}{cal P})^{dagger} =igamma^{0}psi_{M}(t,-vec{x})$, and the CP symmetry describes the entire physics contents of Majorana neutrinos. Further specifications of C and P separately could lead to difficulties depending on the choice of C and P. The conventional $ {cal C} psi_{M}(x) {cal C}^{dagger} = psi_{M}(x)$ with well-defined P is naturally defined when one constructs the Majorana neutrino from the Dirac-type fermion. In the seesaw model of Type I or Type I+II where the same number of left- and right-handed chiral fermions appear, it is possible to use the generalized Pauli-Gursey transformation to rewrite the seesaw Lagrangian in terms of Dirac-type fermions only; the conventional C symmetry then works to define Majorana neutrinos. In contrast, the pseudo C-symmetry $ u_{L,R}(x)rightarrow Coverline{ u_{L,R}(x)}^{T}$ (and associated pseudo P-symmetry), that has been often used in both the seesaw model and Weinbergs model to describe Majorana neutrinos, attempts to assign a nontrivial charge conjugation transformation rule to each chiral fermion separately. But this common construction is known to be operatorially ill-defined and, for example, the amplitude of the neutrinoless double beta decay vanishes if the vacuum is assumed to be invariant under the pseudo C-symmetry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا