Do you want to publish a course? Click here

Gravitational footprints of massive neutrinos and lepton number breaking

497   0   0.0 ( 0 )
 Added by Roman Pasechnik
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the production of primordial Gravitational Waves (GWs) arising from First Order Phase Transitions (FOPTs) associated to neutrino mass generation in the context of type-I and inverse seesaw schemes. We examine both high-scale as well as low-scale variants, with either explicit or spontaneously broken lepton number symmetry $U(1)_L$ in the neutrino sector. In the latter case, a pseudo-Goldstone majoron-like boson may provide a candidate for cosmological dark matter. We find that schemes with softly-broken $U(1)_L$ and with single Higgs-doublet scalar sector lead to either no FOPTs or too weak FOPTs, precluding the detectability of GWs in present or near future measurements. Nevertheless, we found that, in the majoron-like seesaw scheme with spontaneously broken $U(1)_L$ at finite temperatures, one can have strong FOPTs and non-trivial primordial GW spectra which can fall well within the frequency and amplitude sensitivity of upcoming experiments, including LISA, BBO and u-DECIGO. However, GWs observability clashes with invisible Higgs decay constraints from the LHC. A simple and consistent fix is to assume the majoron-like mass to lie above the Higgs-decay kinematical threshold. We also found that the majoron-like variant of the low-scale seesaw mechanism implies a different GW spectrum than the one expected in the high-scale seesaw. This feature will be testable in future experiments. Our analysis shows that GWs can provide a new and complementary portal to test the neutrino mass generation mechanism.



rate research

Read More

383 - Floyd W. Stecker 2017
Observations of high energy neutrinos, both in the laboratory and from cosmic sources, can be a useful probe in searching for new physics. Such observations can provide sensitive tests of Lorentz invariance violation (LIV), which may be a the result of quantum gravity physics (QG). We review some observationally testable consequences of LIV using effective field theory (EFT) formalism. To do this, one can postulate the existence of additional small LIV terms in free particle Lagrangians, suppressed by powers of the Planck mass. The observational consequences of such terms are then examined. In particular, one can place limits on a class of non-renormalizable, mass dimension five and six Lorentz invariance violating operators that may be the result of QG.
We show that if global lepton number symmetry is spontaneously broken in a post inflation epoch, then it can lead to the formation of cosmological domain walls. This happens in the well-known Majoron paradigm for neutrino mass generation. We propose some realistic examples which allow spontaneous lepton number breaking to be safe from such domain walls.
We describe a unique gravitational wave signature for a class of models with a vast hierarchy between the symmetry breaking scales. The unusual shape of the signal is a result of the overlapping contributions to the stochastic gravitational wave background from cosmic strings produced at a high scale and a cosmological phase transition at a low scale. We apply this idea to a simple model with gauged baryon and lepton number, in which the high-scale breaking of lepton number is motivated by the seesaw mechanism for the neutrinos, whereas the low scale of baryon number breaking is required by the observed dark matter relic density. The novel signature can be searched for in upcoming gravitational wave experiments.
We construct a family of non-supersymmetric extremal black holes and their horizonless microstate geometries in four dimensions. The black holes can have finite angular momentum and an arbitrary charge-to-mass ratio, unlike their supersymmetric cousins. These features make them and their microstate geometries astrophysically relevant. Thus, they provide interesting prototypes to study deviations from Kerr solutions caused by new horizon-scale physics. In this paper, we compute the gravitational multipole structure of these solutions and compare them to Kerr black holes. The multipoles of the black hole differ significantly from Kerr as they depend non-trivially on the charge-to-mass ratio. The horizonless microstate geometries have the same multipoles as their corresponding black hole, with small deviations set by the scale of their microstructure.
Using the quantum chromodynamics (QCD) equation of state (EoS) from lattice calculations we investigate effects from QCD on primordial gravitational waves (PGWs) produced during the inflationary era. We also consider different cases for vanishing and nonvanishing lepton asymmetry where the latter one is constrained by cosmic microwave background experiments. Our results show that there is up to a few percent deviation in the predicted gravitational wave background in the frequency range around the QCD transition ($10^{-10}- 10^{-7}$~Hz) for different lattice QCD EoSs, or at larger frequencies for nonvanishing lepton asymmetry using perturbative QCD. Future gravitational wave experiments with high enough sensitivity in the measurement of the amplitude of PGWs like SKA, EPTA, DECIGO and LISA can probe these differences and can shed light on the real nature of the cosmic QCD transition and the existence of a nonvanishing lepton asymmetry in the early universe.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا