Do you want to publish a course? Click here

Gopakumar-Vafa Hierarchies in Winding Inflation and Uplifts

55   0   0.0 ( 0 )
 Added by Alessandro Mininno
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a combined mechanism to realize both winding inflation and de Sitter uplifts. We realize the necessary structure of competing terms in the scalar potential not via tuning the vacuum expectation values of the complex structure moduli, but by a hierarchy of the Gopakumar-Vafa invariants of the underlying Calabi-Yau threefold. To show that Calabi-Yau threefolds with the prescribed hierarchy actually exist, we explicitly create a database of all the genus $0$ Gopakumar-Vafa invariants up to total degree $10$ for all the complete intersection Calabi-Yaus up to Picard number $9$. As a side product, we also identify all the redundancies present in the CICY list, up to Picard number $13$. Both databases can be accessed at this link: https://www.desy.de/~westphal/GV_CICY_webpage/GVInvariants.html .



rate research

Read More

In the first part of this note we argue that ten dimensional consistency requirements in the form of a certain tadpole cancellation condition can be satisfied by KKLT type vacua of type IIB string theory. We explain that a new term of non-local nature is generated dynamically once supersymmetry is broken and ensures cancellation of the tadpole. It can be interpreted as the stress caused by the restoring force that the stabilization mechanism exerts on the volume modulus. In the second part, we explain that it is surprisingly difficult to engineer sufficiently long warped throats to prevent decompactification which are also small enough in size to fit into the bulk Calabi-Yau (CY). We give arguments that achieving this with reasonable amount of control may not be possible in generic CY compactifications while CYs with very non-generic geometrical properties might evade our conclusion.
We propose a landscape of many axions, where the axion potential receives various contributions from shift symmetry breaking effects. We show that the existence of the axion with a super-Planckian decay constant is very common in the axion landscape for a wide range of numbers of axions and shift symmetry breaking terms, because of the accidental alignment of axions. The effective inflation model is either natural or multi-natural inflation in the axion landscape, depending on the number of axions and the shift symmetry breaking terms. The tension between BICEP2 and Planck could be due to small modulations to the inflaton potential or steepening of the potential along the heavy axions after the tunneling. The total duration of the slow-roll inflation our universe experienced is not significantly larger than $60$ if the typical height of the axion potentials is of order $(10^{16-17}{rm ,GeV})^4$.
We present a new mechanism for slow-roll inflation based on higher dimensional supersymmetric gauge theory compactified to four dimensions with twisted (supersymmetry breaking) boundary conditions. These boundary conditions lead to a potential for directions in field space that would have been flat were supersymmetry preserved. For field values in these directions much larger than the supersymmetry-breaking scale, the flatness of the potential is nearly restored. Starting in this nearly flat region, inflation can occur as the theory relaxes towards the origin of field space. Near the origin, the potential becomes steep and the theory quickly descends to a confining gauge theory in which the inflaton does not exist as a particle. This confining gauge theory could be part of the Standard Model (QCD) or a natural dark matter sector; we comment on various scenarios for reheating. As a specific illustration of this mechanism, we discuss 4+1 dimensional maximally supersymmetric gauge theory on a circle with antiperiodic boundary conditions for fermions. When the theory is weakly coupled at the compactification scale, we calculate the inflaton potential directly in field theory by integrating out the heavy W-bosons and their superpartners. At strong coupling the model can be studied using a gravity dual, which realizes a new model of brane inflation on a non-supersymmetric throat geometry. Assuming there exists a UV completion that avoids the eta-problem, predictions from our model are consistent with present observations, and imply a small tensor-to-scalar ratio.
We discuss models involving two scalar fields coupled to classical gravity that satisfy the general criteria: (i) the theory has no mass input parameters, (ii) classical scale symmetry is broken only through $-frac{1}{12}varsigma phi^2 R$ couplings where $varsigma$ departs from the special conformal value of $1$; (iii) the Planck mass is dynamically generated by the vacuum expectations values (VEVs) of the scalars (iv) there is a stage of viable inflation associated with slow roll in the two--scalar potential; (v) the final vacuum has a small to vanishing cosmological constant and an hierarchically small ratio of the VEVs and the ratio of the scalar masses to the Planck scale. This assumes the paradigm of classical scale symmetry as a custodial symmetry of large hierarchies.
We present a mechanism for realizing hybrid inflation using two axion fields with a purely non-perturbatively generated scalar potential. The structure of scalar potential is highly constrained by the discrete shift symmetries of the axions. We show that harmonic hybrid inflation generates observationally viable slow-roll inflation for a wide range of initial conditions. This is possible while accommodating certain UV arguments favoring constraints $flesssim M_{rm P}$ and $Deltaphi_{60}lesssim M_{rm P}$ on the axion periodicity and slow-roll field range, respectively. We discuss controlled $mathbb{Z}_2$-symmetry breaking of the adjacent axion vacua as a means of avoiding cosmological domain wall problems. Including a minimal form of $mathbb{Z}_2$-symmetry breaking into the minimally tuned setup leads to a prediction of primordial tensor modes with the tensor-to-scalar ratio in the range $10^{-4}lesssim r lesssim 0.01$, directly accessible to upcoming CMB observations. Finally, we outline several avenues towards realizing harmonic hybrid inflation in type IIB string theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا