Do you want to publish a course? Click here

Phase transitions in a conservative Game of Life

60   0   0.0 ( 0 )
 Added by Andre Vieira
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the dynamics of a conservative version of Conways Game of Life, in which a pair consisting of a dead and a living cell can switch their states following Conways rules but only by swapping their positions, irrespective of their mutual distance. Our study is based on square-lattice simulations as well as a mean-field calculation. As the density of dead cells is increased, we identify a discontinuous phase transition between an inactive phase, in which the dynamics freezes after a finite time, and an active phase, in which the dynamics persists indefinitely in the thermodynamic limit. Further increasing the density of dead cells leads the system back to an inactive phase via a second transition, which is continuous on the square lattice but discontinuous in the mean-field limit.



rate research

Read More

The problem of finding a microscopic theory of phase transitions across a critical point is a central unsolved problem in theoretical physics. We find a general solution to that problem and present it here for the cases of Bose-Einstein condensation in an interacting gas and ferromagnetism in a lattice of spins, interacting via a Heisenberg or Ising Hamiltonian. For Bose-Einstein condensation, we present the exact, valid for the entire critical region, equations for the Green functions and order parameter, that is a critical-region extension of the Beliaev-Popov and Gross-Pitaevskii equations. For the magnetic phase transition, we find an exact theory in terms of constrained bosons in a lattice and obtain similar equations for the Green functions and order parameter. In particular, we outline an exact solution for the three-dimensional Ising model.
In this work we consider the phase transition from ordered to disordered states that occur in the Vicsek model of self-propelled particles. This model was proposed to describe the emergence of collective order in swarming systems. When noise is added to the motion of the particles, the onset of collective order occurs through a dynamical phase transition. Based on their numerical results, Vicsek and his colleagues originally concluded that this phase transition was of second order (continuous). However, recent numerical evidence seems to indicate that the phase transition might be of first order (discontinuous), thus challenging Vicseks original results. In this work we review the evidence supporting both aspects of this debate. We also show new numerical results indicating that the apparent discontinuity of the phase transition may in fact be a numerical artifact produced by the artificial periodicity of the boundary conditions.
We study the non-equilibrium phase transition between survival and extinction of spatially extended biological populations using an agent-based model. We especially focus on the effects of global temporal fluctuations of the environmental conditions, i.e., temporal disorder. Using large-scale Monte-Carlo simulations of up to $3times 10^7$ organisms and $10^5$ generations, we find the extinction transition in time-independent environments to be in the well-known directed percolation universality class. In contrast, temporal disorder leads to a highly unusual extinction transition characterized by logarithmically slow population decay and enormous fluctuations even for large populations. The simulations provide strong evidence for this transition to be of exotic infinite-noise type, as recently predicted by a renormalization group theory. The transition is accompanied by temporal Griffiths phases featuring a power-law dependence of the life time on the population size.
The unconstrained ensemble describes completely open systems in which energy, volume and number of particles fluctuate. Here we show that not only equilibrium states can exist in this ensemble, but also that completely open systems can undergo first-order phase transitions. This is shown by studying a modified version of the Thirring model with attractive and repulsive interactions and with particles of finite size. The model exhibits first-order phase transitions in the unconstrained ensemble, at variance with the analogous model with point-like particles. While unconstrained and grand canonical ensembles are equivalent for this model, we found inequivalence between the unconstrained and isothermal-isobaric ensembles. By comparing the thermodynamic phase diagram in the unconstrained case with that obtained in the isothermal-isobaric ensemble, we show that phase transitions under completely open conditions for this model are different from those in which the number of particles is fixed, highlighting the inequivalence of ensembles.
We show that near a second order phase transition in a two-component elastic medium of size L in two dimensions, where the local elastic deformation-order parameter couplings can break the inversion symmetry of the order parameter, the elastic modulii diverges with the variance of the local displacement fluctuations scaling as $[ln(L/a_0)]^{2/3}$ and the local displacement correlation function scaling as $[ln(r/a_0)]^{2/3}$ for weak inversion-asymmetryThe elastic constants can also vanish for system size exceeding a non-universal value, making the system unstable for strong asymmetry, where a 0 is a small-scale cut-off. We show that the elastic deformation-order parameter couplings can make the phase transition first order, when the elastic modulii do not diverge, but shows a jump proportional to the jump in the order parameter, across the transition temperature. For a bulk system, the elastic stiffness does not diverge for weak asymmetry, but can vanish across a second order transition giving instability for strong asymmetry, or displays jumps across a first order transition. In-vitro experiments on binary fluids embedded in a polymerized network, magnetic colloidal crystals or magnetic crystals could test these predictions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا