Do you want to publish a course? Click here

Fuzzy Dark Matter and the 21cm Power Spectrum

97   0   0.0 ( 0 )
 Added by Skyler Palatnick
 Publication date 2021
  fields Physics
and research's language is English
 Authors Dana Jones




Ask ChatGPT about the research

We model the 21cm power spectrum across the Cosmic Dawn and the Epoch of Reionization (EoR) in fuzzy dark matter (FDM) cosmologies. The suppression of small mass halos in FDM models leads to a delay in the onset redshift of these epochs relative to cold dark matter (CDM) scenarios. This strongly impacts the 21cm power spectrum and its redshift evolution. The 21cm power spectrum at a given stage of the EoR/Cosmic Dawn process is also modified: in general, the amplitude of 21cm fluctuations is boosted by the enhanced bias factor of galaxy hosting halos in FDM. We forecast the prospects for discriminating between CDM and FDM with upcoming power spectrum measurements from HERA, accounting for degeneracies between astrophysical parameters and dark matter properties. If FDM constitutes the entirety of the dark matter and the FDM particle mass is 10-21eV, HERA can determine the mass to within 20 percent at 2-sigma confidence.



rate research

Read More

We investigate and quantify the impact of mixed (cold and warm) dark matter models on large-scale structure observables. In this scenario, dark matter comes in two phases, a cold one (CDM) and a warm one (WDM): the presence of the latter causes a suppression in the matter power spectrum which is allowed by current constraints and may be detected in present-day and upcoming surveys. We run a large set of $N$-body simulations in order to build an efficient and accurate emulator to predict the aforementioned suppression with percent precision over a wide range of values for the WDM mass, $M_mathrm{wdm}$, and its fraction with respect to the totality of dark matter, $f_mathrm{wdm}$. The suppression in the matter power spectrum is found to be independent of changes in the cosmological parameters at the 2% level for $klesssim 10 h/$Mpc and $zleq 3.5$. In the same ranges, by applying a baryonification procedure on both $Lambda$CDM and CWDM simulations to account for the effect of feedback, we find a similar level of agreement between the two scenarios. We examine the impact that such suppression has on weak lensing and angular galaxy clustering power spectra. Finally, we discuss the impact of mixed dark matter on the shape of the halo mass function and which analytical prescription yields the best agreement with simulations. We provide the reader with an application to galaxy cluster number counts.
The cold dark matter (CDM) scenario has proved successful in cosmology. However, we lack a fundamental understanding of its microscopic nature. Moreover, the apparent disagreement between CDM predictions and subgalactic-structure observations has prompted the debate about its behaviour at small scales. These problems could be alleviated if the dark matter is composed of ultralight fields $m sim 10^{-22} text{eV}$, usually known as fuzzy dark matter (FDM). Some specific models, with axion-like potentials, have been thoroughly studied and are collectively referred to as ultralight axions (ULAs) or axion-like particles (ALPs). In this work we consider anharmonic corrections to the mass term coming from a repulsive quartic self-interaction. Whenever this anharmonic term dominates, the field behaves as radiation instead of cold matter, modifying the time of matter-radiation equality. Additionally, even for high masses, i.e. masses that reproduce the cold matter behaviour, the presence of anharmonic terms introduce a cut-off in the matter power spectrum through its contribution to the sound speed. We analyze the model and derive constraints using a modified version of CLASS and comparing with CMB and large-scale structure data.
The epoch of reionization power spectrum is expected to evolve strongly with redshift, and it is this variation with cosmic history that will allow us to begin to place constraints on the physics of reionization. The primary obstacle to the measurement of the EoR power spectrum is bright foreground emission. We present an analysis of observations from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) telescope which place new limits on the HI power spectrum over the redshift range of $7.5<z<10.5$, extending previously published single redshift results to cover the full range accessible to the instrument. To suppress foregrounds, we use filtering techniques that take advantage of the large instrumental bandwidth to isolate and suppress foreground leakage into the interesting regions of $k$-space. Our 500 hour integration is the longest such yet recorded and demonstrates this method to a dynamic range of $10^4$. Power spectra at different points across the redshift range reveal the variable efficacy of the foreground isolation. Noise limited measurements of $Delta^2$ at $k=$0.2hMpc$^{-1}$ and z$=7.55$ reach as low as (48mK)$^2$ ($1sigma$). We demonstrate that the size of the error bars in our power spectrum measurement as generated by a bootstrap method is consistent with the fluctuations due to thermal noise. Relative to this thermal noise, most spectra exhibit an excess of power at a few sigma. The likely sources of this excess include residual foreground leakage, particularly at the highest redshift, and unflagged RFI. We conclude by discussing data reduction improvements that promise to remove much of this excess.
If the symmetry breaking inducing the axion occurs after the inflation, the large axion isocurvature perturbations can arise due to a different axion amplitude in each causally disconnected patch. This causes the enhancement of the small-scale density fluctuations which can significantly affect the evolution of structure formation. The epoch of the small halo formation becomes earlier and we estimate the abundance of those minihalos which can host the neutral hydrogen atoms to result in the 21cm fluctuation signals. We find that the future radio telescopes, such as the SKA, can put the axion mass bound of order $m_a gtrsim 10^{-13}$ eV for the simple temperature-independent axion mass model, and the bound can be extended to of order $m_a gtrsim 10^{-8}$eV for a temperature-dependent axion mass.
Using the Reduced Relativistic Gas (RRG) model, we analytically determine the matter power spectrum for Warm Dark Matter (WDM) on small scales, $k>1 htext{/Mpc}$. The RRG is a simplified model for the ideal relativistic gas, but very accurate in the cosmological context. In another work, we have shown that, for typical allowed masses for dark matter particles, $m>5 text{keV}$, the higher order multipoles, $ell>2$, in the Einstein-Boltzmann system of equations are negligible on scales $k<10 htext{/Mpc}$. Hence, we can follow the perturbations of WDM using the ideal fluid framework, with equation of state and sound speed of perturbations given by the RRG model. We derive a Meszaros like equation for WDM and solve it analytically in radiation, matter and dark energy dominated eras. Joining these solutions, we get an expression that determines the value of WDM perturbations as a function of redshift and wavenumber. Then we construct the matter power spectrum and transfer function of WDM on small scales and compare it to some results coming from Lyman-$alpha$ forest observations. Besides being a clear and pedagogical analytical development to understand the evolution of WDM perturbations, our power spectrum results are consistent with the observations considered and the other determinations of the degree of warmness of dark matter particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا